Components for electrical actuation

(4) C_Electrics

Electric actuation
for industrial automation

Technology and innovation for industrial applications

Every application in the industrial automation sector has different and very specific requirements. For this reason, by creating a team of expertise people devoted to the development of solutions for electric actuation, Camozzi Automation has included in its technological offerings electromechanical cylinders and axes with auxiliary motors and accessory components, combined in configurable systems. The objective is to supply products and software tools that support the user through their decision-making and afterwards, through installation and maintenance.
For this purpose, Camozzi Automation has developed QSet, an extremely intuitive and efficient configuration software, that is able to create a program for the positioning and control of cylinders and axes based on the requirements of the application in terms of load, speed, and accelerations requested.

Movement		
		Pag
Series$6 \mathrm{E}$	Electromechanical cylinders	8
	Sizes 32, 40, 50, 63, 80, 100	
Series 5E	Electromechanical axis	33
	Sizes 50, 65, 80	
Series 5 V	Series 5E Vertical electromechanical axis	60
	Sizes 50, 65, 80	
Series DRWB	Drives for the control of electric actuation	72
	Drives for Brushless motors, sizes in power classes 100, 400, 750, 1000 W	
SeriesDRCS	Drives for Stepper motors	81
	One-size full digital drives with bluetooth system and NFC integrated	
Series	Motors for electric actuation	88
MTB	Brushless motors in power classes 100, 400, 750, 1000 W	
Series MTS	Motors for electric actuation	91
	Stepper motors with Nema 23, 24, 34 fixing flange	
Series	Planetary gearboxes	94
GB	Available sizes: 40, 60, 80, 120	
$\begin{aligned} & \hline \text { Series } \\ & \text { CO } \end{aligned}$	Motion transmission devices	98
	Mod. COE: elastomer coupling with clamps Mod. COS: elastomer coupling with expansion shaft Mod. COT: self-centering locking-set	

Technologies to serve our customers

Integration

At Camozzi we believe that there is no actuation technology that is absolutely better than another technology. Our conviction is that every application has different requirements that can be satisfied in the best way possible thanks to the use of a specific technology: pneumatics, proportional or electric. It's precisely the ability to offer all technologies and to combine them in case of need, optimizing single movements and the performance requested in the context of an industrial application, that represents the competitive advantage that Camozzi is able to offer its customers.

To control speed, acceleration, the position in relation to the load to move and the distances to cover, the requested precision, optimizing costs and providing a solution that is easy to install and to manage, are all the result of the combination of technologies and skills that Camozzi offers its partners with one aim only: providing the solution with the highest added value.

The Camozzi multi-technology approach

The ideal solution for any application

Our Business Development Managers, who are in charge of single industrial sectors can support you in studying the requirements of the various applications, and can identify the best solution in terms of technologies and products.

(4) C_Electrics

We build
any configuration according to specific requirements

Once configured, it is possible to program up to 64 command lines, each of them defining an absolute, relative, or force position.
All the other functions can be reached easily and promptly.

Series 6E

electromechanical cylinders

Sizes 32, 40, 50, 63, 80, 100

The Series 6E cylinders are mechanical linear actuators with rod, in which the rotary movement, generated by a motor, is converted into a linear movement by means of a recirculating ball screw. Available in 4 sizes, $32,40,50$ and 63, the Series 6E has dimensions based on the ISO 15552 standard and it is therefore possible to use the mounting accessories of the pneumatic cylinders.

The cylinders are equipped with a magnet that makes it possible to use external magnetic proximity switches (Series CST and CSH), allowing operations like homing or extra-stroke readings to be performed. The Series $6 E$ is equipped with specific interface kits, which make it possible to connect the motor, both in line and parallel. High precision and easy mounting make the Series 6E the ideal solution for different applications, especially for multi-position systems.
» In compliance with the ISO 15552 standard
» Multi-position system with transmission of the movement by means of a recirculating ball screw

Possibility to connect the motor in line or parallel
» Large range of motor interfaces
»Permanent pre-lubrication (maintenance free)

High positioning repeatability
»Reduced axial backlash
» Possibility to use magnetic sensors
» Integrated anti-rotation system of the rod
» IP40 / IP65
» Wide range of fixing accessories
» Compatible with Series 45 anti-rotation guide units

GENERAL DATA

Construction	electromechanical cylinder with recirculating ball screw
Design	profile with thread rolling screws based on the ISO 15552 standard multi-position actuator with high precision linear movement
Operation	$32,40,50,63,80,100$ Sizes
Strokes (min - max) $100 \div 1500 \mathrm{~mm}$	
Anti-rotation function	with anti-friction pads in technopolymer
Mounting	front / rear flange, with feet, with front / rear / swivel trunnion
Mounting motor	in line and parallel
Operating temperature $0^{\circ} \mathrm{C} \div 50^{\circ} \mathrm{C}$ Storage temperature $-20^{\circ} \mathrm{C} \div 80^{\circ} \mathrm{C}$ Protection class $\mathrm{IP40} / \mathrm{IP65}$ Lubrication Not necessary. A pre-lubrication is performed on the cylinder. Max. Reversing backlash 0.02 mm Repeatability ± 0.02 Duty cycle 100% Max rotation play $\pm 0.4^{\circ}$ Use with external sensors slots on three sides for sensors model CSH and CST	

STANDARD STROKES

Intermediate strokes are available upon request．

STANDARD STROKES											
Size	100	200	300	400	500	600	700	800	1000	1200	1500
32	＊	＊	＊	＊	＊						
40	＊	\times	＊	＊	＊	＊	＊				
50	＊	\times	＊	＊	＊	＊		＊	＊		
63	＊	\times	＊	x	＊			＊	＊	＊	
80	\times	\times	＊	\times	＊			\times	＊	\times	＊
100	＊	\times	＊	＊	＊			＊	＊	＊	＊

CODING EXAMPLE

6E	032	BS	0200	P05	A	
6E	SERIES					
032	$\begin{aligned} & \text { SIZE: } \\ & 032=32 \\ & 040=40 \\ & 050=50 \\ & 063=63 \\ & 080=80 \\ & 100=100 \end{aligned}$					
BS	DESIGN： BS＝recirculating ball screw					
0200	STROKE： $100 \div 1500 \mathrm{~mm}$					
P05	SCREW PITCH P05 $=5 \mathrm{~mm}$ P10 $=10 \mathrm{~mm}$ $\mathrm{P} 16=16 \mathrm{~mm}$（for size 40 only） $\mathrm{P} 20=20 \mathrm{~mm}$（for size 50 only） $\mathrm{P} 25=25 \mathrm{~mm}$（for size 63 only） P32 $=32 \mathrm{~mm}$（for size 80 only） P40 $=40 \mathrm{~mm}$（for size 100 only）					
A	CONSTRUCTION：$\mathrm{A}=$ standard with rod nut					
	VERSION： $=$ IP40（not available for sizes 80 and 100） ＝IP65 （＿＿＿）＝extended piston rod＿＿mm					

MECHANICAL CHARACTERISTICS

Size		32	32	40	40	40	50	50	50	63	63	63	80	80	80	80	100	100	100	100
BS screw diameter	［mm］	12	12	16	16	16	20	20	20	25	25	25	32	32	32	32	40	40	40	40
BS screw pitch（p）	［mm］	5	10	5	10	16	5	10	20	5	10	25	5	10	20	32	5	10	20	40
Dynamic load coefficient（ C ）	［ N$]$	6600	4400	12000	8500	9150	14900	11300	7800	17700	20500	11300	26300	52500	28200	26100	35100	55900	45300	55900
Max admissible load（Cmax）	［ N ］	$525{ }^{(A)}$	$440{ }^{(A)}$	950 ${ }^{(A)}$	$850{ }^{(A)}$	$1070{ }^{(4)}$	$1180^{(A)}$	$1130{ }^{(4)}$	980 ${ }^{(A)}$	$1405{ }^{(A)}$	$2050{ }^{(4)}$	$1535^{(A)}$	$2085{ }^{(\text {A })}$	$5250{ }^{(A)}$	$3550{ }^{(A)}$	$3845{ }^{(A)}$	$2785^{(A)}$	$5590{ }^{(A)}$	$5705^{(A)}$	$8875{ }^{(A)}$
Max applicable torque	［ Nm ］	2.50	2.80	5.50	6.50	8.20	9.10	10.90	13.60	16.60	19.90	24.90	30	36	30	36	60	60	60	60
Max linear speed＊	［m／s］	0.56	1.12	0.42	0.84	1.33	0.33	0.67	1.33	0.27	0.53	1.33	0.23	0.47	0.94	1.50	0.19	0.38	0.75	1.50
Max rotational speed	［rpm］	6670	6670	5000	5000	5000	4000	4000	4000	3200	3200	3200	2810	2810	2810	2810	2250	2250	2250	2250
Max acceleration	［ $\mathrm{m} / \mathrm{s}^{2}$ ］	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25

[^0]

LIST OF COMPONENTS	
PARTS	MATERIALS
1. Rod nut	Zinc-plated steel
2. Rod seal	PU
3. Bushing	Technopolymer
4. Front endcap	Anodized aluminium
5. Rod	Stainless steel
6. Magnet	Plastoferrite
7. Extrusion profile	Anodized aluminium
8. Guiding element BS screw	Aluminium
9. End stroke seals	NBR
10. Bearing	Steel
11. Rear endcap	Anodized aluminium
12. BS ball screw	Steel

All accessories are supplied separately，except for piston rod lock nut Mod．U

HOW TO CALCULATE THE LIFE OF THE CYLINDER

To perform a correct dimensioning of the Series 6E cylinder, you need to consider some facts.

Among these, the most important are:

- Dynamics of the system
- Operation and pause cyclicity
- Work environment
- General performance requirements: repeatability, accuracy, precision, etc.

CALCULATE THE LIFE IN ROTATIONS

 where:$$
L_{r}=\left(\frac{C}{F_{m} \cdot f_{w}}\right)^{3} \cdot 10^{6}
$$

$L_{r}=$ Life of the cylinder in number of rotations of the BS ball screw
$\mathrm{C}=$ Dynamic load coefficient of the cylinder [N]
$\mathrm{F}_{\mathrm{m}}=$ Average axial force applied [N]
$f_{w}^{m}=$ Safety coefficient according to the working conditions

CALCULATION OF LIFE IN km where:

$$
L_{k m}=\frac{L_{r} \cdot p}{10^{6}}
$$

$L_{k m}=$ Life of the cyllinder in $\mathrm{km}[\mathrm{km}]$
$\mathrm{p}=$ pitch of the BS ball screw [mm]

CALCULATION OF THE LIFE IN HOURS
where:

$$
L_{h}=\frac{L_{r}}{n_{m} \cdot 60}
$$

$L_{h}=$ Life of the cylinder in hours
$\mathrm{n}_{\mathrm{m}}=$ average number of revolutions of the RDS ball screw [rpm]

APPLICATION	ACCELERATION $\left[\mathrm{m} / \mathrm{s}^{2}\right]$	SPEED $[\mathrm{m} / \mathrm{s}]$	<0.5
light	<5.0	$0.5 \div 1.0$	DUTY CYCLE
normal	$5.0 \div 15.0$	>1.0	$<35 \%$
heavy	>15.0		$1.0 \div 1.25$

ANALYSIS OF THE DUTY CYCLE AND OF SYSTEM PAUSES

The analysis of the duty cycle and
of the pauses of the system is
essential to calculate the average
Fm axial loads and the number of average revolutions nm that act on the cylinder.
Normally, the duty cycle is composed
by phases and for each single
phase, we can have an acceleration,
constant speed or deceleration.
CALCULATION OF THE
AVERAGE AXIAL FORCE

$$
\begin{aligned}
& F_{m}=\sqrt[3]{\frac{\left(F_{a 1}^{3} \cdot n_{a 1} \cdot t_{a 1}\right)+\left(F_{v c 1}^{3} \cdot n_{v c 1} \cdot t_{v c 1}\right)+\left(F_{d 1}^{3} \cdot n_{d 1} \cdot t_{d 1}\right)+\ldots+\left(F_{a n}^{3} \cdot n_{a n} \cdot t_{a n}\right)+\left(F_{v c n}^{3} \cdot n_{v c n} \cdot t_{v c n}\right)+\left(F_{d n}^{3} \cdot n_{d n} \cdot t_{d n}\right)}{\left(n_{a 1} \cdot t_{a 1}\right)+\left(n_{v c 1} \cdot t_{v c 1}\right)+\left(n_{d 1} \cdot t_{d 1}\right)+\ldots+\left(n_{a n} \cdot t_{a n}\right)+\left(n_{v c n} \cdot t_{v c n}\right)+\left(n_{d n} \cdot t_{d n}\right)}} \\
& n_{m}=\left\{\frac{\left(n_{a 1} \cdot t_{a 1}\right)+\left(n_{v c 1} \cdot t_{v c 1}\right)+\left(n_{d 1} \cdot t_{d 1}\right)+\ldots+\left(n_{a n} \cdot t_{a n}\right)+\left(n_{v c n} \cdot t_{v c n}\right)+\left(n_{d n} \cdot t_{d n}\right)}{t_{a 1}+t_{v c 1}+t_{d 1}+\ldots+t_{a n}+t_{v c n}+t_{d n}}\right\}
\end{aligned}
$$

CALCULATION OF THE AVERAGE NUMBER OF REVOLUTIONS

The table shown below reports the values of acceleration, speed and deceleration for each phase.

		F [N]		n [rpm]		time \%
PHASE 1	Acceleration Constant speed Deceleration	Fa1 Fvc1 Fd1	na1 nvc1 nd1		ta1 tvc1 td1	
PHASE 2	Acceleration Constant speed Deceleration	Fa2 Fvc2 Fd2	na2 nvc2 nd2		$\begin{aligned} & \hline \text { ta2 } \\ & \text { tvc2 } \\ & \text { td2 } \end{aligned}$	
PHASE "n-1"	Acceleration Constant speed Deceleration	Fan-1 Fven-1 Fdn-1	nan-1 nven-1 ndn-1		tan-1 tven-1 tdn-1	
PHASE " n "	Acceleration Constant speed Deceleration	Fan Fven Fdn	nan-1 nven-1 ndn-1		tan-1 tven-1 tdn-1	
	TOTAL				100\%	

APPLICATION EXAMPLE

Phase 1	$\begin{aligned} & F_{a 1}=142 \mathrm{~N} ; \\ & n_{a 1}=630 \mathrm{rpm} ; \\ & t_{a 1}=0,7 \% ; \end{aligned}$	$\begin{aligned} & F_{v c 1}=98 \mathrm{~N} ; \\ & n_{v c 1}=1260 \mathrm{rpm} ; \\ & t_{v c 1}=12,9 \% \end{aligned}$	$\begin{aligned} & F_{d 1}=54 \mathrm{~N} ; \\ & n_{d 1}=630 r p m ; \\ & t_{d 1}=0,7 \% ; \end{aligned}$
Phase 2	$\begin{aligned} & F_{a 2}=616 \mathrm{~N} ; \\ & n_{a 2}=450 \mathrm{rpm} ; \\ & t_{a 2}=4,8 \% \end{aligned}$	$\begin{aligned} & F_{v c 2}=589 \mathrm{~N} ; \\ & n_{v c 2}=900 \mathrm{rpm} ; \\ & t_{v c 2}=33,3 \% ; \end{aligned}$	$\begin{aligned} & F_{d 2}=562 \mathrm{~N} ; \\ & n_{d 2}=450 r p m ; \\ & t_{d 2}=4,8 \% ; \end{aligned}$
Phase 3	$\begin{aligned} & F_{a 3}=997 \mathrm{~N} ; \\ & n_{a 3}=240 \mathrm{rpm} ; \\ & t_{a 3}=7,1 \% ; \end{aligned}$	$\begin{aligned} & F_{v c 3}=981 \mathrm{~N} ; \\ & n_{v c 3}=480 \mathrm{rpm} ; \\ & t_{v c 3}=28,6 \% \end{aligned}$	$\begin{aligned} & F_{d 3}=965 \mathrm{~N} ; \\ & n_{d 3}=240 \mathrm{rpm} ; \\ & t_{d 3}=7,1 \% ; \end{aligned}$
in this way it is possible to determine:	$\begin{aligned} & K_{1}=\left(F_{a 1}^{3} \cdot n_{a 1} \cdot t_{a 1}\right)+\left(F_{v c 1}^{3} \cdot n_{v c 1} \cdot t_{v c 1}\right)+\left(F_{d 1}^{3} \cdot n_{d 1} \cdot t_{d 1}\right) \\ & K_{2}=\left(F_{a 2}^{3} \cdot n_{a 2} \cdot t_{a 2}\right)+\left(F_{v c 2}^{3} \cdot n_{v c 2} \cdot t_{v c 2}\right)+\left(F_{d 2}^{3} \cdot n_{d 2} \cdot t_{d 2}\right) \\ & K_{3}=\left(F_{a 3}^{3} \cdot n_{a 3} \cdot t_{a 3}\right)+\left(F_{v c 3}^{3} \cdot n_{v c 3} \cdot t_{v c 3}\right)+\left(F_{d 3}^{3} \cdot n_{d 3} \cdot t_{d 3}\right) \end{aligned}$		

$n_{1}=\left(n_{a 1} \cdot t_{a 1}\right)+\left(n_{v c 1} \cdot t_{v c 1}\right)+\left(n_{d 1} \cdot t_{d 1}\right)$	$T_{1}=t_{a 1}+t_{v c 1}+t_{d 1}$
$n_{2}=\left(n_{a 2} \cdot t_{a 2}\right)+\left(n_{v c 2} \cdot t_{v c 2}\right)+\left(n_{d 3} \cdot t_{d 3}\right)$	$T_{2}=t_{a 2}+t_{v c 2}+t_{d 2}$
$n_{3}=\left(n_{a 3} \cdot t_{a 3}\right)+\left(n_{v c 3} \cdot t_{v c 3}\right)+\left(n_{d 3} \cdot t_{d 3}\right)$	$T_{3}=t_{a 3}+t_{v c 3}+t_{d 3}$

Concluding, we know that:
$F_{m}=\sqrt[3]{\frac{\left(K_{1}+K_{2}+K_{3}\right)}{\left(n_{1}+n_{2}+n_{3}\right)}}=596,64 \mathrm{~N}$
$n_{m}=\frac{n_{1}+n_{2}+n_{3}}{T_{1}+T_{2}+T_{3}}=685,7 \mathrm{rpm}$

		$\mathrm{F}[\mathrm{N}]$	$\mathrm{n}[\mathrm{rpm}]$	time $\%$
PHASE 1	Acceleration	142	630	0.7
	Constant speed	98	1260	12.9
	Deceleration	54	630	4.7
PHASE 2	Acceleration	616	450	43.8
	Constant speed	589	900	4.3
	Deceleration	562	450	7.1
PHASE 3	Acceleration	997	480	28.6
	Constant speed	981	240	7.1
	Deceleration	965		100.0

HOW TO CALCULATE THE DRIVING TORQUE [Nm]

$\mathrm{F}_{\mathrm{A}}=$ Total force acting from outside [N]
$\mathrm{F}_{\mathrm{E}}^{\mathrm{A}}=$ Force to be applied externally [N$]$
$\mathrm{g}=$ Gravitational acceleration [$9.81 \mathrm{~m} / \mathrm{s}^{2}$]
$\mathrm{m}_{\mathrm{E}}=$ Mass of the body to move [kg]
$\mu=$ Friction coefficient of the support guide
$p=$ Pitch of the ball screw [mm]
$\mathrm{C}_{\mathrm{M} 1}=$ Driving torque due to external agents [Nm]

$$
\begin{gathered}
\boldsymbol{C}_{\text {TOT }}=\boldsymbol{C}_{M 1}+\boldsymbol{C}_{M 2}+\boldsymbol{C}_{M 3} \\
F_{A}=F_{E}+\mu \cdot m_{E} \cdot g \\
\boldsymbol{C}_{M 1}=\frac{\boldsymbol{F}_{A} \cdot \boldsymbol{p}}{2 \boldsymbol{2} \cdot \mathbf{1 0 0 0}}
\end{gathered}
$$

$J_{\text {TOT }}=$ Moment of inertia of rotating components $\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]$
$J_{\mathrm{F}}^{\mathrm{TOT}}=$ Moment of inertia of fixed-length
rotating components $\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right.$]
$J_{\mathrm{v}}=$ Moment of inertia of variable-length rotating components [$\mathrm{kg} \cdot \mathrm{m}^{2}$]
$\mathrm{K}_{\mathrm{v}}=$ Coefficient of inertia of variable-length
rotating components $\left[\mathrm{kg} \cdot \mathrm{mm}^{2} / \mathrm{mm}\right.$]
C = Rod stroke [mm]
$\dot{\omega}=$ Angular acceleration [rad/s²]
$a=$ Linear acceleration of the ball screw $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$\mathrm{C}_{\mathrm{M} 2}=$ Driving torque due to rotating components [Nm]

$$
\begin{gathered}
J_{\text {TOT }}=\left(J_{F}+J_{V}\right) \cdot 10^{-6} \\
J_{V}=K_{V} \cdot C \\
\dot{\omega}=\frac{a \cdot 2 \pi \cdot 1000}{p} \\
C_{M 2}=J_{\text {TOT }} \cdot \dot{\omega}
\end{gathered}
$$

$\mathrm{F}_{\mathrm{TT}}=$ Force needed to move translating components [N]
$\mathrm{F}_{\mathrm{TF}}=$ Force needed to move fixed-length
$F_{T T}=F_{T F}+F_{T V}$
translating components [N]
$\mathrm{F}_{\mathrm{TV}}=$ Force needed to move variable-length translating components [N]
$\mathrm{m}_{\mathrm{C} 1}=$ Mass of the fixed-length translating components [kg]
$\mathrm{K}_{\mathrm{TV}}=$ Mass coefficient of variable-length translating components [kg/mm]
$\mathrm{C}_{\text {м3 }}=$ Driving torque due to translating components [Nm]

$$
F_{T F}=m_{C 1} \cdot a
$$

$$
F_{T V}=K_{T V} \cdot C \cdot a
$$

$$
C_{M 3}=\frac{F_{T T} \cdot p}{2 \pi \cdot 1000}
$$

Values of masses and fixed and rotating inertia moments of 6 E components			
Size	$\mathrm{J}_{\mathrm{F}}\left[\mathrm{kg} \cdot \mathrm{mm}^{2}\right]$	$\mathrm{K}_{\mathrm{v}}\left[\mathrm{kg} \cdot \mathrm{mm}^{2} / \mathrm{mm}\right]$	$\mathrm{m}_{\mathrm{C} 1}[\mathrm{~kg}]$
32	2.88	0.02	0.15
40	7.92	0.05	0.43
50	21.77	0.12	0.70
63	66.35	0.30	$1.9017 \cdot 10-4$
80	230.89	0.81	$1.8771 \cdot 10-4$
100	526.49	1.98	$1.388 \cdot 10-3$

Life of the cylinder according to the average axial force applied

Size 32
F = Axial Force [N]
$\mathrm{L}=$ life [km]

* Curves calculated with $\mathrm{fw}=1$

Size 50
F = Axial Force [N]
$\mathrm{L}=$ life $[\mathrm{km}]$

* Curves calculated with $\mathrm{fw}=1$

Size 40

F = Axial Force [N]

$\mathrm{L}=$ life [km]

* Curves calculated with $\mathrm{fw}=1$

Size 63
$F=$ Axial Force [N$]$
$\mathrm{L}=$ life [km]

* Curves calculated with fw $=1$

Life of the cylinder according to the average axial force applied

Size 80

F = Axial Force [N]
 $\mathrm{L}=$ life [km]

* Curves calculated with $\mathrm{fw}=1$

Size 100
F = Axial Force [N]
$\mathrm{L}=$ life [km]

* Curves calculated with $\mathrm{fw}=1$

Maximum speed of the cylinder according to its stroke

Size 32

$$
\begin{aligned}
& V=\text { speed }[\mathrm{m} / \mathrm{s}] \\
& \mathrm{c}=\text { stroke }[\mathrm{mm}]
\end{aligned}
$$

Size 40

[^1]Maximum speed of the cylinder according to its stroke

Size v
$\mathrm{V}=$ speed $[\mathrm{m} / \mathrm{s}]$
$\mathrm{c}=$ stroke $[\mathrm{mm}]$

Size 80

$$
\begin{aligned}
& \mathrm{V}=\text { speed }[\mathrm{m} / \mathrm{s}] \\
& \mathrm{c}=\text { stroke }[\mathrm{mm}]
\end{aligned}
$$

Size 63
$\mathrm{V}=$ speed $[\mathrm{m} / \mathrm{s}]$
$\mathrm{c}=$ stroke $[\mathrm{mm}]$

Size 100

$$
\begin{aligned}
& \mathrm{V}=\text { speed }[\mathrm{m} / \mathrm{s}] \\
& \mathrm{c}=\text { stroke }[\mathrm{mm}]
\end{aligned}
$$

Maximum force of the cylinder according to its stroke

Size 32
F = static axial Force [N] $\mathrm{c}=$ stroke [mm]

Size 50

$$
\begin{aligned}
& \mathrm{F}=\text { static axial Force }[\mathrm{N}] \\
& \mathrm{c}=\text { stroke }[\mathrm{mm}]
\end{aligned}
$$

Size 40
$\mathrm{F}=$ static axial Force $[\mathrm{N}]$
$\mathrm{c}=$ stroke $[\mathrm{mm}]$

Size 63

$$
\begin{aligned}
& \mathrm{F}=\text { static axial Force }[\mathrm{N}] \\
& \mathrm{c}=\text { stroke }[\mathrm{mm}]
\end{aligned}
$$

Maximum force of the cylinder according to its stroke

Size 80
$\mathrm{F}=$ static axial Force $[\mathrm{N}]$
$\mathrm{c}=$ stroke [mm]

Size	AM B BG	E	F	F1	F2 F3	KK	L1 L2+ L3	MM	N	R	RT	PL	SW1	SW2	W3	TG		VD	Y				H	ZJ+	eight stro	
32	223016	46.5	8	-	- -	M10x1.25	201255.5	18	26	13	M6	21	10	G1/8	17	32.5	6	4	-	-	-	-	30	155	1175	377
40	243516	55.4	10	-	- -	M12x1.25	221425.5	22	27	13.5	M6	24	13	G1/8	19	38	6	4	-	-	-	-	33	175	1395	530
50	324016	64.9	12	-	- -	M16x1.5	261735.5	25	36	16	M8	30	17	G1/8	24	46.5	7	4	-	-	-	-	38	211	2280	603
63	324516	75	15	-	- -	M16x1.5	292015.5	30	36	28	M8	38	17	G1/8	24	56.5	7	4	-	-	-	-	42	242.5	3500	977
80	405518	93	19	10.5	1849	M20x1.5	35211	40	39	30	M10	39	22	G1/4	30	72	8	8	M6	10	3	12	49	260	6440	1370
100	406518	115	24	13	1862	M20x1.5	38232 -	50	44	40	M10	42	22	G1/4	30	89	8	8	M6	10	3	16	51	283	10725	2050

Housing for axial connection Mod. CM
Material: anodized aluminium

$$
\underbrace{-i-a}_{A}
$$

Supplied with:
$1 \times$ housing
4 x screws

+ = add the stroke

Mod.	Size	XT	E	${ }_{6}{ }^{\text {D }}$	TG	FL	${ }_{\varnothing}{ }^{\text {L }}$	${ }_{6} \mathrm{M}^{(H 7)}$	T	TD	RT	1	Weight (g)
CM-6E-32	32	201	46.5	42	32.5	46	29	32	4	37	M3	9	100
CM-6E-40	40	224	55.4	52	38	49	36	37	4	43	M3	9	150
CM-6E-50	50	267	64.9	58	46.5	56	39	42	4	49	M4	9	225
CM-6E-63	63	306.5	75	60.5	56.5	64	48	47	4	54	M4	9	280

Mod.	Size	Motor	${ }_{\varnothing}$ DM	E	F	XW	Weight (g)	η
AM-6E-32-0100	32	MTB-010-...	8	46.5	42	55	165	0.78
AM-6E-32-0023	32	MTS-23-...	6.35	46.5	56.4	53	240	0.78
AM-6E-40-0400	40	MTB-040-...	14	55.4	60	67	290	0.78
AM-6E-40-0023	40	MTS-23-...	6.35	55.4	56.4	56	365	0.78
AM-6E-50-0400	50	MTB-040-...	14	64.9	60	73	435	0.78
AM-6E-50-0024	50	MTS-24-...	8	64.9	58	63	415	0.78
AM-6E-63-0750	63	MTB-075-...	19	75	80	90	845	0.78
AM-6E-63-0024	63	MTS-24-...	8	75	60.5	71	480	0.78

Kit for axial connection Mod．AM（Protection class IP65）

Supplied with：
$1 \times$ housing
1x flange
1 x flexible coupling
$4 x$ screws to connect
on the cylinder＇s side
$4 x$ screws to connect
on the motor＇s side

Mod．	Size	Motor	${ }_{\varnothing}$ DM	E	F	XW	Weight（g）	η
AM－6E－32－0100P	32	MTB－010－．．．	8	46.5	42	55	165	0.78
AM－6E－32－0023P	32	MTS－23－．．．	6.35	46.5	56.4	53	240	0.78
AM－6E－32－0024P	32	MTS－24－．．．	8	46.5	56.4	53	240	0.78
AM－6E－40－0400P	40	MTB－040－．．．	14	55.4	60	67	290	0.78
AM－6E－40－0023P	40	MTS－23－．．．	6.35	55.4	56.4	56	365	0.78
AM－6E－40－0024P	40	MTS－24－．．．	8	55.4	56.4	56	365	0.78
AM－6E－50－0400P	50	MTB－040－．．．	14	64.9	60	73	435	0.78
AM－6E－50－0750P	50	MTB－075－．．．	19	64.9	80	86	746	0.78
AM－6E－50－0024P	50	MTS－24－．．．	8	64.9	58	63	415	0.78
AM－6E－50－0034P	50	MTS－34－．．．	14	64.9	86	83	785	0.78
AM－6E－63－0750P	63	MTB－075－．．．	19	75	80	90	845	0.78
AM－6E－63－0024P	63	MTS－24－．．．	8	75	60.5	71	480	0.78
AM－6E－63－0034P	63	MTS－34－．．．	14	75	86	88	1025	0.78
AM－6E－80－1000P	80	MTB－100－．．．	24	93	130	112.5	2510	0.78
AM－6E－80－0034P	80	MTS－34－．．．	14	93	93	94.5	1885	0.78
AM－6E－100－1000P	100	MTB－100－．．．	24	115	30	115.5	3465	0.78
AM－6E－100－0034P	100	MTS－34－．．．	14	115	93	97.5	2840	0.78

Supplied with:
2x flanges (1 for size 80) 8 x screws
1 x coupling
$2 x$ seals (1 for size 80)

Mod.	Size	Gearbox	XE +	FL	F	E	DC	LC	CC	F1	F2	F3	Y	Y1	Y2	Y3	DS	LS	Weight (g)
AR-6E-50-R060P	50	GB-060-...	287.4	76.4	-	64.9	40	30	52	-	-	-	-	-	-	-	14	35	630
AR-6E-63-R060P	63	GB-060- \ldots	338.5	96	-	75	40	4	52	-	-	-	-	-	-	-	14	35	1100
AR-6E-80-R080P	80	GB-080-...	357.5	97.5	-	93	60	5	70	15	18	49	6	10	3.1	8.9	20	40	2090
AR-6E-100-R120P	100	GB-120-...	399	116	125	115	60	5	70	15	18	62	6	10	3.1	8.9	20	40	3800

1x flange to connect
the motor to the cylinder
1x cover
$2 x$ locking sets
$2 x$ locking sets
$1 x$ toothed belt
$1 x$ toothed belt
$1 x$ belt traction unit
$1 x$ belt traction unit
$4 x$ fixing screws
$4 x$ fixing screws
$4 x$ screws for cylinder's side
$4 x$ screws rear cover
$6 x$ cover fixing screws

Kit for parallel connection Mod. PM (Protection class IP40)

Mod.	Size	Motor	A	F	G1	G2	B	C	TG	Weight (g)	η
PM-6E-32-0100	32	MTB-010-...	122	50	35	38.2	26.5	65	32.5	400	0.62
PM-6E-40-0400	40	MTB-040-...	154	67	46	49.2	30	90	38	900	0.62
PM-6E-50-0400	50	MTB-040-...	174	77	48	52.4	34.5	105.5	46.5	1250	0.62
PM-6E-63-0750	63	MTB-075-...	192	87	50	54.4	41	107	56.5	1500	0.62

Kit for parallel connection Mod．PM（Protection class IP65）

The kit includes：
$1 x$ front cover
1x rear cover
2x pulleys
$2 x$ locking sets
$1 x$ toothed belt
$1 x$ belt traction unit
$4 x$ screws for cylinder＇s side
$4 x$ cover rear screws
＋seal washers
$6 x$ cover fixing screws
$3 x$ seals
1 x seal plug
$4 x$ motor seal washers

Mod．	Size	Gearbox	Motor	G3	A	F	G1	G2	B	C	TG	Weight（g）	η
PM－6E－32－0100P	32	－	MTB－010－．．．	－	122	54	35	39.2	26.5	65	32.5	450	0.62
PM－6E－32－0024P	32	－	MTS－24－．．．	30	122	54	35	39.2	26.5	65	32.5	450	0.62
PM－6E－40－0400P	40	－	MTB－040－．．．	－	154	67	46	50.2	30	90	38	960	0.62
PM－6E－40－0024P	40	－	MTS－24－．．．	－	154	67	46	50.2	30	90	38	960	0.62
PM－6E－50－0400P	50	－	MTB－040－．．．	－	174	77	48	53.4	34.5	105.5	46.5	1375	0.62
PM－6E－50－0034P	50	－	MTS－34－．．．	44.5	174	77	48	53.4	34.5	105.5	46.5	1375	0.62
PM－6E－50－R060P	50	GB－060－．．．	MTB－040－．．．	－	174	77	48	53.4	34.5	105.5	46.5	1375	0.62
PM＝6E－63－0750－P	63	－	MTB－075－．．．	－	192	87	50	55.4	41	107	56.5	1675	0.62
PM－6E－63－0034P	63	－	MTS－34－．．．	－	192	87	50	55.4	41	107	56.5	1675	0.62
PM－6E－63－R060P	63	GB－060－．．．	MTB－040．．．	－	192	87	50	55.4	41	107	56.5	1675	0.62
PM－6E－80－1000P	80	－	MTB－100－．．．	－	310	135	70	77	65	180	72	4457	0.62
PM－6E－80－0034P	80	－	MTS－34－．．．	－	310	135	70	77	65	180	72	4457	0.62
PM－6E－80－R080P	80	GB－080－．．．	MTB－075－．．．	－	310	135	70	77	65	180	72	4457	0.62
PM－6E－100－1000P	100	－	MTB－100－．．．	－	310	135	70	77	65	180	72	4457	0.62
PM－6E－100－0034P	100	－	MTS－34－．．．	－	310	135	70	77	65	180	72	4457	0.62
PM－6E－100－R080P	100	GB－080－．．．	MTB－075－．．．	－	310	135	70	77	65	180	72	4457	0.62

| Flange for axial connection Mod. FM |
| :--- | :--- |
| Material: anodized aluminium |

Mod.	Size	Housing	Motor	XR	${ }_{\varnothing} \mathrm{C}^{(17)}$	PF	LT	LD	${ }_{6} \mathrm{M}^{(H 7)}$	E	${ }_{6} \mathrm{R}$	TF	FW1	${ }_{\varnothing}{ }^{\text {TD }}$	SP	${ }_{6}$ FW2	${ }_{6} \mathrm{DC}$	${ }_{\varnothing}$ DM	Weight (g)
FM-6E-32-0100	32	CM-6E-32	MTB-010-...	210	30	6	11	9	32	42	29	31.8	M3	37	6	3.5	8	8	65
FM-6E-32-0023	32	CM-6E-32	MTS-23-...	208	38.1	5	9	7	32	56.4	29	47.1	M4	37	5	3.5	8	6.35	140
FM-6E-40-0400	40	CM-6E-40	MTB-040-...	242	50	3.5	20	18	37	60	33	49.5	M5	43	3.5	3.5	10	14	140
FM-6E-40-0023	40	CM-6E-40	MTS-23-...	231	38.1	5	9	7	37	56.4	33	47.1	M4	43	5	3.5	10	6.35	215
FM-6E-50-0400	50	CM-6E-50	MTB-040-...	284	50	6	19	17	42	60	37	49.5	M5	49	14	4.5	12	14	210
FM-6E-50-0024	50	CM-6E-50	MTS-24-...	274	38.1	3	9	7	42	58	37	47.1	M4	49	4	4.5	12	8	190
FM-6E-63-0750	63	CM-6E-63	MTB-075-...	332.5	70	6	28	26	47	80	43	63.6	M6	54	24	4.5	15	19	565
FM-6E-63-0024	63	CM-6E-63	MTS-24-...	313.5	38.1	5	9	7	47	60.5	43	47.1	M4	54	5	4.5	15	8	200

\qquad

Foot bracket Mod. B-6E
Material: zinc-plated steel
Supplied with:
$2 x$ feet
8 x screws

* Mounting available for sizes 32, 40, 50 and 63 only

+ = add the stroke

*

Mod.	Size	SA	XA	AH	TG	TR	AT	AU	AO	${ }_{6} \mathrm{AB}$	ER	E	Weight (g)
B-6E-32	32	164	174.5	32	32.5	65	4	19.5	12.5	6.6	79	46.5	275
B-6E-40	40	181	194.5	36	38	75	4	19.5	12.5	6.6	90	55.4	340
B-6E-50	50	223	236	45	46.5	90	5	25	15	9	110	64.9	635
B-6E-63	63	251	267.5	50	56.5	100	5	25	15	9	120	75	755
B-6E-80	80	278	293.5	68.5	72	120	6	33.5	17.5	10.5	140	93	1300
B-6E-100	100	299	316.5	79.5	89	140	6	33.5	17.5	10.5	170	115	1800

Supplied with:
1x spot faced trunnion
$4 x$ screws

Mod.	\varnothing	TK	TY	XH	US	TL	TM	${ }_{\varnothing}$ TD	R	torque force
FN-32	32	14	6.5	23.5	46	12	50	12	1	5 Nm
FN-40	40	19	9	24	59	16	63	16	1.5	5 Nm
FN-50	50	19	9	29	69	16	75	16	1.6	10 Nm
FN-63	63	24	11.5	30.5	84	20	90	20	1.6	10 Nm
FN-80	80	24	11.5	34.5	102	20	110	20	1.6	15 Nm
FN-100	100	29	14	37	125	25	132	25	2	15 Nm

Mod.	\varnothing	${ }_{6} \mathrm{CR}$	NH	C	B3	TH	UL	FK	FN	B1	B2	HB
BF-32	32	12	15	7.5	3	32	46	15	30	6.8	11	6.6
BF-40-50	40-50	16	18	9	3	36	55	18	36	9	15	9
BF-63-80	63-80	20	20	10	3	42	65	20	40	11	18	11
BF-100-125	100-125	25	25	12.5	3.5	50	75	25	50	13	20	14

Front flange Mod. D-E
Material: aluminium

Mod.	Size	W	MF	ZB+	TF	R	UF	E	FB	torque force
D-E-41-32	32	20	10	155	64	32	86	45	7	6 Nm
D-E-41-40	40	23	10	175	72	36	88	52	9	6 Nm
D-E-41-50	50	26.5	12	211	90	43	110	63	9	13 Nm
D-E-41-63	63	30	12	242.5	100	50	116	73	9	13 Nm
D-E-41-80	80	30	16	260	126	63	148	95	12	15 Nm
D-E-41-100	100	35	16	283	150	75	176	115	14	15 Nm

Supplied with:
1x female trunnion 4x screws

+ = add the stroke

Mod.	Size	${ }_{\varnothing} \mathrm{CD}$	L	FL	XD+	MR	E	CB	UB	torque force
C-41-32	32	10	12	22	212	10	45	26	45	6 Nm
C-41-40	40	12	15	25	246	12	53.5	28	52	6 Nm
C-41-50	50	12	15	27	286	13	62.5	32	60	13 Nm
C-H-41-63	63	16	20	32	324.5	17	73	40	70	13 Nm
C-H-41-80	80	16	24	36	373	17	92	50	90	15 Nm
C-H-41-100	100	20	29	41	401	21	108.5	60	110	15 Nm

Rear female trunnion Mod. C and C-H
Material: aluminium
Accessory combination Mod. C+L+S
Material: aluminium

Mod.	Size	E	TG	${ }_{\varnothing} \mathrm{N}$	XD+	${ }_{\varnothing} \mathrm{CD}$	L	FL	1	M	$Z^{\circ}(\max)$	torque force
C+L+S	32	45	32.5	6.5	142	10	12	22	10	22	30	6 Nm
C+L+S	40	53.5	38	6.5	160	12	15	25	10	25	40	6 Nm
C+L+S	50	62.5	46.5	9	170	12	15	27	12	27	25	13 Nm
C+L+S	63	73	56.5	9	190	16	20	32	12	32	36	13 Nm
C+L+S	80	92	72	11	373	16	24	36	12	36	34	15 Nm
C+L+S	100	108.5	89	11	401	20	29	41	12	41	38	15 Nm

Clevis pin Mod．S

Mod．	Size	${ }^{\text {d }}$	L	L1	L2	
S－32	32	10	52	46	1.1	
S－40	40	12	59	53	1.1	
S－50	50	12	67	61	1.1	
S－63	63	16	77	71	1.1	
S－80	80	16	97	9	1.1	
S－100	100	20	121	111	3	

Swivel ball joint Mod. GA
ISO 8139.
Material: zinc-plated steel

Mod.	${ }_{\varnothing} \mathrm{CN}^{(H 7)}$	U	EN	ER	AX	CE	KK	${ }_{\varnothing}{ }^{\top}$	Z	SW
GA-32	10	10,5	14	14	20	43	$\mathrm{M} 10 \times 1,25$	15	6,5	17
GA-40	12	12	16	16	22	50	M12X1,25	17,5	6,5	19
GA-50-63	16	15	21	21	28	64	M16X1,5	22	7,5	22
GA-80-100	20	18	25	25	33	77	M20x1,5	27,5	7	30

	Piston rod lock nut Mod. U ISO 4035 Material: zinc-plated steel		

Mod.	Size	KK	L	L1	L3	L4	${ }_{\varnothing}{ }^{\text {A }}$	${ }_{\square}{ }^{\text {D }}$	H	1	SW	SW1	SW2	B1	AX	Z	E
GK-25-32	32	M10x1.25	71.5	35	20	7.5	14	22	32	30	19	12	17	5	22	4	2
GK-40	40	M12x1.25	75.5	35	24	7.5	14	22	32	30	19	12	19	6	22	4	2
GK-50-63	50-63	M16x1.5	104	53	32	10	22	32	45	41	27	20	24	8	30	3	2
GK-80-100	80-100	M20x1.5	119	53	40	10	22	32	45	41	27	20	30	10	37	3	2

Coupling piece Mod. GKF

Series 5E
 electromechanical axis

Sizes 50, 65, 80
Available versions: standard axis, support axis, reinforced axis

Series 5E axes are mechanical linear actuators in which the rotary movement generated by a motor is converted into a linear movement by means of a toothed belt.
The Series 5 E , available in 3 sizes, 50,65 and 80 , is realized by means of a special self-supporting square profile, in which the components have been completely integrated, assuring compactness and light weight.
The presence of a recirculating ball guide grants high stiffness and resistance to external loads.

To protect the internal elements from potential contaminants from the external environment, the profile has been closed with a stainless steel plate. The axis is equipped with a magnet that makes it possible to use external proximity switches (Series CSH), allowing operations like homing or extra-stroke readings to be performed. Moreover, these actuators also have accessories in order to be used with inductive sensors. The Series 5 E is equipped with specific interface kits making it possibleto connect the motor on 4 sides. The use with high dynamics and the possibility to realize multi-axis systems, make the Series 5E particularly suitable for the packaging and assembly sectors.

Multiposition system with transmission of the movement with toothed belt
» Suitable for high dynamics
Possibility to connect the motor on 4 sides
» Large range of motor interfaces

Possibility to use magnetic proximity switches and/ or inductive sensors
» IP 40
» Max stroke 6 meters
»Plates to realize multiaxis systems
» Presence of internal channels for re-lubrication
" Large range of axis mounting accessories
» Sliders available:
standard, long, double

GENERAL DATA

Construction	electromechanical axis with toothed belt
Design	open profile with protection plate
Operation	multi-position actuator
Sizes	$50,65,80$
Strokes	$50 \div 4000 \mathrm{~mm}$ for size $50 ; 50 \div 6000 \mathrm{~mm}$ for sizes 65 and 80
Type of guide	internal, with recirculating balls (cage type)
Fixing	by means of slots on the profile and special clamps
Mounting motor	on all 4 sides
Operating temperature	$-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$
Protection class	IP 40
Lubrication	centralized lubrification by means of internal channels
Repeatability	$\pm 0.05 \mathrm{~mm}$
Duty cycle	100%
Use with external sensors	Series CSH magnetic switches in special slots or inductives by means of supports

CODING EXAMPLE

5E	S	050	TBL	0200	A	S	2(500)
5E	SERES						
S	PROFILE $\mathrm{S}=$ square section						
050	FRAME SIZE: $050=50 \times 50 \mathrm{~mm}$ $080=80 \times 80 \mathrm{~mm}$						
TBL	TRANSMISSION: TBL = toothed belt						
0200	STROKE [C] $0050 \div 4000 \mathrm{~mm}$ for size 050 $0050 \div 6000 \mathrm{~mm}$ for sizes 065 and 080						
A	ERSIONS $A=$ standard axis $D=$ support axis H = reinforced axis						
S	TYPE OF SLIDER: S = standard L = long - only for standard axis (A version)						
2(500)	NUMBER OF SLIDERS $1=1$ slider $2\left(_\right.$) $=2$ sliders at (___) mm step - only for standard axis (A) with standard slider (S)						

MECHANICAL CHARACTERISTICS

(A) Value refers to a covered distance of 2000 Km with fully supported system.
(B) The "suggested" speed is not the mechanical limit of the unit but represents the best compromise between high load applied and high dynamics In case of particular requirements, please contact our technical assistance (service@camozzi.com).

		Size 50	Size 50	Size 50	Size 50	Size 65	Size 65	Size 65	Size 65	Size 80	Size 80	Size 80	Size 80
RECIRCULATING BALL GUIDE (CAGE TYPE)													
Version		A	A	D	H	A	A	D	H	A	A	D	H
Type of slider		S	L	S	S	S	L	S	S	S	L	S	S
Number of guides		1	1	1	2	1	1	1	2	1	1	1	2
Number of RDS blocks	pcs	2	3	2	4	2	3	2	4	2	3	2	4
Dynamic load of RDS blocks (C)	N	11640	17460	11640	23280	28400	42600	28400	56800	44600	66900	44600	89200
Max admissible load ($\mathrm{C}_{\text {max }} \mathrm{z}, \mathrm{C}_{\text {max }} \mathrm{y}$)	N	$3100{ }^{(4)}$	$5100{ }^{(A)}$	$3100{ }^{(4)}$	$6800{ }^{(4)}$	$8300{ }^{(4)}$	12450 ${ }^{(4)}$	$8300^{(4)}$	$16600{ }^{(4)}$	$13100^{(4)}$	19600 ${ }^{(4)}$	$13100{ }^{(4)}$	$26080{ }^{(A)}$
Max admissible moment ($\left.\mathrm{M}_{\text {max }} \mathrm{X}\right)$	Nm	22.44	31.23	22.44	$105{ }^{(4)}$	96.00	144.00	96.00	$380^{(4)}$	216.60	324.9	216.6	$740{ }^{(4)}$
Max admissible moment ($M_{\text {max }} \mathbf{y}, \mathrm{M}_{\text {max }} \mathrm{z}$)	Nm	45.30	96.76	45.3	$185{ }^{(4)}$	269.40	612.64	269.4	$530^{(4)}$	525.00	1193.17	525.00	$1200{ }^{(4)}$
Max linear speed of mechanics ($\mathrm{V}_{\text {max }}$)	m/s	5	$2.5{ }^{\text {(8) }}$	5	$2.5{ }^{(8)}$	5	$2.5{ }^{(8)}$	5	$2.5{ }^{(8)}$	5	$2.5{ }^{(8)}$	5	$2.5{ }^{(8)}$
Max linear acceleration of mechanics ($\mathrm{a}_{\text {max }}$)	$\mathrm{m} / \mathrm{s}^{2}$	50	$20^{(8)}$	50	$20^{(8)}$	50	$20^{(8)}$	50	$20^{(8)}$	50	$20^{(8)}$	50	$20^{(3)}$
PROFILE													
Mass in movement	kg	0.45	0.62	0.45	1.32	1.10	1.51	1.10	2.78	2.30	3.11	2.30	6.96
Mass in movement per stroke meter	kg/m	0.13	0.13	0.13	0.13	0.21	0.21	0.21	0.21	0.41	0.41	0.41	0.41
Moment of surface inertia ly	mm^{4}	$1.89 \cdot 10^{5}$	$1.89 \cdot 10^{5}$	$1.89 \cdot 10^{5}$	$1.89 \cdot 10^{5}$	$4.94 \cdot 10^{5}$	$4.94 \cdot 10^{5}$	$4.94 \cdot 10^{5}$	$4.94 \cdot 10^{5}$	$1.23 \cdot 10^{6}$	$1.23 \cdot 10^{6}$	$1.23 \cdot 10^{6}$	$1.23 \cdot 10^{6}$
Moment of surface inertia lz	mm^{4}	$2.48 \cdot 10^{5}$	$2.48 \cdot 10^{5}$	$2.48 \cdot 10^{5}$	$2.48 \cdot 10^{5}$	$6.97 \cdot 10^{5}$	$6.97 \cdot 10^{5}$	$6.97 \cdot 10^{5}$	$6.97 \cdot 10^{5}$	$1.68 \cdot 10^{6}$	$1.68 \cdot 10^{6}$	$1.68 \cdot 10^{6}$	$1.68 \cdot 10^{6}$
TOOTHED BELT													
Type		20 AT 5 HP	20 AT 5 HP	-	20 AT 5 HP	32 AT 5 HP	32 AT 5 HP	-	32 AT 5 HP	32 AT 5 HP	32 AT 5 HP	-	32 AT 5 HP
Pitch	mm	5	5	-	5	5	5	-	5	10	10	-	10
Max transmittable load	N	See the diagram	See the diagram	-	See the diagram	See the diagram	See the diagram	-	See the diagram	See the diagram	See the diagram	-	See the diagram
PULLEY													
Effective diameter of the pulley	mm	31.83	31.83	-	31.83	47.75	47.75	-	47.75	63.66	63.66	-	63.66
Number of teeth	z	20	20	-	20	30	30	-	30	20	20	-	20
Linear movement per pulley round	mm/round	100	100	-	100	150	150	-	150	200	200	-	200
NOTE: check the nominal admissible torque of the used motion transmission devices.													

SERIES 5E STROKE

LEGEND:

C = Stroke
SE = Standard extra-stroke [5ES050.. $=30 \mathrm{~mm}$]
[5ES065.. $=30 \mathrm{~mm}$]
[5ES080.. $=30 \mathrm{~mm}$]
NOTES:

- Should an additional extra-stroke be required, it must be foreseen by the client.
- The slider should never work in stop on the header.

How to calculate the life of the axis 5 E

The correct dimensioning of the axis 5E, used individually or in a cartesian system with several axes, you need to consider some facts, both static and dynamic. Among these, the most important are described on the following pages.

CALCULATION OF LIFE [km]

$$
L_{e q}=\left(\frac{C_{m a}}{C_{e q} \cdot f_{w}}\right)^{3} \cdot 2000
$$

$L_{\text {eq }}=$ Life of the axis $5 E[k m]$
$\mathrm{C}_{\text {ma }}=$ Maximum admissible load [N$]$
$\mathrm{C}_{\text {eq }}=$ Equivalent load [N]
$\mathrm{f}_{\mathrm{w}}^{\text {eq }}=$ safety coefficient according to the working conditions

CALCULATION OF EQUIVALENT LOAD

When compression/traction and side loads as well as bending or torque moments act on the system, you need to calculate the equivalent load acting on the system.
$C_{\text {eq }}=$ Equivalent load [N]
$\mathrm{F}_{\mathrm{y}}^{\text {eq }}=$ Force acting along the Y-axis $[\mathrm{N}]$
$\mathrm{F}_{\mathrm{z}}^{y}=$ Force acting along the Z-axis [N]
$\mathrm{C}_{\text {ma }}=$ Max admissible load [N]
$M_{x}^{m a}=$ Moment along X-axis $[\mathrm{Nm}]$
$M_{y}=$ Moment along Y-axis [Nm]
$M_{z}^{y}=$ Moment along Z-axis [Nm]
$\mathrm{M}_{(\mathrm{x}, \mathrm{ma)}}=\mathrm{Max}$ admissible moment along X-axis [Nm]
$M_{(y, \text { ma) })}^{(x, \text { ma) }}=$ Max admissible moment along Y-axis [Nm]
$\mathrm{M}_{(\mathrm{z}, \mathrm{ma})}=$ Max admissible moment along Z-axis [Nm]

$$
C_{e q}=\left|F_{y}\right|+\left|F_{z}\right|+C_{m a} \cdot\left|\frac{M_{x}}{M_{x, m a}}\right|+C_{m a} \cdot\left|\frac{M_{y}}{M_{y, m a}}\right|+C_{m a} \cdot\left|\frac{M_{z}}{M_{z, m a}}\right|
$$

How to calculate the maximum deflection and verify the distance between supports

The electromechanical axis 5E is a self-supporting system and can also be used between 2 or more supports without the need of a continuous contact surface.
The maximum value of the deflection generated by the deformation of the system must never exceed the following calculation:
$\mathrm{f}_{\text {max }}=$ Maximum admissible deflection [mm]

$$
f_{\max }=c_{\max } \cdot 5 \cdot 10^{-4}
$$

$\mathrm{C}_{\text {max }}=$ Maximum stroke of axis $5 \mathrm{E}[\mathrm{mm}]$
NOTE: for a quicker choice, please see the graphs on the following pages.

APPLICATION	ACCELERATION $\left[\mathrm{m} / \mathrm{s}^{2}\right]$	SPEED $[\mathrm{m} / \mathrm{s}]$	DUTY CYCLE	
light	<10	<1.5	$<35 \%$	f_{w}
normal	$10 \div 25$	$1.5 \div 2.5$	$35 \% \div 65 \%$	$1 \div 1.25$
heavy	>25	>2.5	$>65 \%$	$1.25 \div 1.5$
				$1.5 \div 3$

HOW TO CALCULATE THE DRIVING TORQUE［Nm］

$\mathrm{F}_{\mathrm{A}}=$ Total force acting from outside［ N$]$

$$
C_{T O T}=C_{M 1}+C_{M 2}+C_{M 3}
$$

$\mathrm{F}_{\mathrm{E}}=$ Force to be applied externally［ N$]$
$\mathrm{g}=$ Gravitational acceleration $\left[9.81 \mathrm{~m} / \mathrm{s}^{2}\right]$
$\mathrm{m}_{\mathrm{E}}=$ Mass of the body to move［kg］
$D_{p}^{E}=$ Pulley pitch diameter［ mm ］
$\mathrm{C}_{\mathrm{M} 1}=$ Driving torque due to external agents $[\mathrm{Nm}]$

$$
\begin{gathered}
F_{A}=F_{E}+m_{E} \cdot a \\
C_{M 1}=\frac{F_{A} \cdot D_{P}}{2}
\end{gathered}
$$

$J_{\text {TOT }}=$ Moment of inertia of rotating components $\left[k g \cdot \mathrm{~m}^{2}\right.$ ］
$\dot{\omega}=$ Angular acceleration $\left[\mathrm{rad} / \mathrm{s}^{2}\right]$
$a=$ Axis linear acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$\mathrm{C}_{\mathrm{M} 2}=$ Driving torque due to rotating components［Nm］

$$
\begin{aligned}
\hat{\omega} & =\frac{2 \cdot a}{D_{P}} \\
c_{M 2} & =J_{\text {Tor }} \cdot \omega
\end{aligned}
$$

$\mathrm{F}_{\mathrm{TT}}=$ Force needed to move translating components［ N ］

$$
F_{T T}=F_{T F}+F_{T V}
$$

$F_{T F}=$ Force needed to move fixed－length
translating components［ N ］
$\mathrm{F}_{\mathrm{TV}}=$ Force needed to move variable－length translating components［ N ］
$\mathrm{m}_{\mathrm{C}_{1}}=$ Mass of fixed－length translating components $[\mathrm{kg}]$
$\mathrm{K}_{\mathrm{TV}}=$ Mass coefficient of variable－length
translating components $[\mathrm{kg} / \mathrm{mm}]$
$\mathrm{C}_{\mathrm{M} 3}=$ Driving torque due to translating components［ Nm ］

$$
\begin{gathered}
F_{T F}=m_{C 1} \cdot a \\
F_{T V}=K_{T V} \cdot C \cdot a \\
C_{M 3}=\frac{F_{T T} \cdot D_{P}}{2}
\end{gathered}
$$

Mod．	$\mathrm{J}_{\text {TOT }}\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]$	$\mathrm{m}_{\mathrm{c} 1}[\mathrm{~kg}]$	$\mathrm{K}_{\text {TV }}[\mathrm{kg} / \mathrm{mm}$ ］
5E050．．．AS1	48.76	0.51	$1.4 \cdot 10^{-4}$
5E050．．．AL1	48.76	0.80	$1.4 \cdot 10^{-4}$
5E050．．．AS2	48.76	1.01	$1.4 \cdot 10^{-4}$
5E050．．．DS1	0.00	0.40	0.00
5E050．．．HS1	48.76	1.38	$1.4 \cdot 10^{-4}$
5E065．．．AS1	372.07	1.27	$2.1 \cdot 10^{-4}$
5E065．．．AL1	372.07	1.83	$2.1 \cdot 10^{-4}$
5E065．．．AS2	372.07	2.53	$2.1 \cdot 10^{-4}$
5E065．．．DS1	0.00	1.01	0.00
5E065．．．HS1	372.07	2.84	$2.1 \cdot 10^{-4}$
5E080．．．AS1	1130.28	2.69	$3.4 \cdot 10^{-4}$
5E080．．．AL1	1130.28	3.84	$3.4 \cdot 10^{-4}$
5E080．．．AS2	1130.28	5.38	$3.4 \cdot 10^{-4}$
5E080．．．DS1	0.00	2.15	0.00
5E080．．．HS1	1130.28	5.61	$3.4 \cdot 10^{-4}$
Products designed for industrial applications． General terms and conditions for sale are available on www．camozzi．com．			

TRANSMISSIBLE FORCE

According to axis size and speeds \quad 1500 chosen, force that can be transmitted 4

LIFE OF THE SERIES 5E AXIS ACCORDING TO THE EQUIVALENT LOAD

TYPE OF SLIDER: S
Curves calculated with fw = 1
Ceq = Equivalent load applied on the axis $5 \mathrm{E}[\mathrm{kN}]$
Leq = Life of the axis 5 E [km]

TYPE OF SLIDER: L

Curves calculated with fw = 1
Ceq $=$ Equivalent load applied on the axis $5 \mathrm{E}[\mathrm{kN}]$
Leq = Life of the axis $5 \mathrm{E}[\mathrm{km}]$

EQUIVALENT LOAD

To determine the moment acting on the axis $x, M x$, in an accurate way, refer to the following formula:
$M x=F y \cdot(h+h 1)$

where:

$\mathrm{Mx}=$ Moment along X-axis [Nm]
Fy $=$ Force acting along the Y-axis [N]
$\mathrm{h}=$ fixed distance for axis 5E [mm]
h1 = application arm [mm]
$\mathrm{G} 1=$ origin of the system of 5 E axis coordinates
G2 = barycentre of application of acting forces
NOTE: here below, valid for A version, the " h " values:

- h = 45.5 mm (5ES050)
- $\mathrm{h}=56.0 \mathrm{~mm}$ (5ES065)
- $\mathrm{h}=69.5 \mathrm{~mm}$ (5ES080)

Valid for H version, " A " and " B " version:
"A" = 56.0 mm "B" 32.9 mm (5ES050)
"A" = 57.0 mm "B" 45.0 mm (5ES065)
"A" = 71.6 mm "B" 51.6 mm (5ES080)

Deflection according to the distance of the supports - A version

Size 050
$\mathrm{f}=$ deflection generated between the supports [mm] $d=$ distance between the supports [mm]

Size 080
$\mathrm{f}=$ deflection generated between the supports [mm] $d=$ distance between the supports [mm]

Size 050
$\mathrm{f}=$ deflection generated between the supports [mm] $d=$ distance between the supports [mm]

Size 065
$\mathrm{f}=$ deflection generated between the supports [mm] $\mathrm{d}=$ distance between the supports [mm]

Size 080
$\mathrm{f}=$ deflection generated between the supports [mm] $d=$ distance between the supports [mm]

Side clamping bracket Mod. BGS

Interface plate - Series 6 E cylinder on slider

Kit to fix the inductive sensor

Interface plate - profile side on slider, left pos.

Kit to connect the gearbox

Interface plate - slider on slider

Interf. plate - profile side on slider, right pos.

Kit to connect the gearbox, enhanced series

Direct connection kit for Stepper motor

Interface plate - profile on slider

Fixed interface plate

Centering ring
Mod. TR-CG

Interface plate - profile on slider - long arm

Interface plate Guide S. 45 / Cyl. S. 6E

要要

Parallel connection kit

Nuts for slots

5E/5V connection flange

All accessories are supplied separately from the axis.
Together with the axis, a kit is supplied containing:

- covers to close the holes on the endcap
- centering bushings for the slider
- nipples for greasing

NOTE:

* We recommend a coupling with a shaft of tolerance h8.
- Dimension T2 in size 50 is not indicated because there is only one slot.
- Dimension Y indicates the hole for centralized lubrication by means of grease.

Size	A	B	C	${ }_{\varnothing} \mathrm{C} 1$	C2	${ }_{\varnothing} \mathrm{C}^{(\mathrm{H8})}$	D1	D2	E	E1	F		G2	H	L1	L2	M1	M2	M3	N	P1 P2	P2	1	J1	2	J2	K3	J3	T1	T2	T3	V	X1	X2	W		Z2
50	32.5	15	37	37	4.5	20	17	32	8.5	100	50	6	2	60	354	238	200	48	65	5	30	40	M4	7	M3	5	M4	8	20		10	6	304	21.8	230	8	4
65	35	20	53	52	5	26	23.5	46	8.5	125	65	8	3	75	438	288	250	63	80	5	40	53	M5	8	M3	6	M5	10	23.5	18	10	6	373	30.5	280	8	4
80	35	30	68			38	30.5	60.5	11.5	165		10		95	548																			0.5			

Size	WEIGHT STROKE ZERO $[\mathrm{kg}]$	STROKE WEIGHT PER METER $[\mathrm{kg} / \mathrm{m}]$
$\mathbf{5 0}$	2.15	3.35
$\mathbf{6 5}$	4.6	5.4
$\mathbf{8 0}$	8.9	5.9

NOTE:

* We recommend a coupling with a shaft of tolerance h8.
- Dimension T2 in size 50 is not indicated because there is only one slot.
- Dimension Y indicates the hole for centralized lubrication by means of grease.

Size	A	B	E	E1	F	${ }_{\varnothing} \mathrm{G} 1$	G2	H	L1	L2	M1	M2	M3	N	P1	P2	K1	J1	K2	J2	T1	T2	T3	V	Y	W	Z1	Z2
50	32.5	15	8.5	100	50	6	2	60	354	238	200	48	65	5	30	40	M4	7	M3	5	20	-	10	6	-	230	8	4
65	35	20	8.5	125	65	8	3	75	438	288	250	63	80	5	40	53	M5	8	M3	6	23.5	18	10	6	-	280	8	4
80	35	30	11.5	165	80	10	3	95	548	368	330	78	100	8	55	64	M6	12	M4	8.5	25	25	10	8	-	360	8	4

Size	WEIGHT STROKE ZERO $[\mathrm{kg}]$	STROKE WEIGHT PER METER [kg/m]
$\mathbf{5 0}$	1.81	3.00
$\mathbf{6 5}$	3.58	4.88
$\mathbf{8 0}$	7.05	5.31

Size	WEIGHT STROKE ZERO $[\mathrm{kg}]$	STROKE WEIGHT PER METER [kg/m]
$\mathbf{5 0}$	3.30	4.25
$\mathbf{6 5}$	3.72	6.86
$\mathbf{8 0}$	14.86	8.34

Electromechanical axis Mod. 5E...AL1

NOTE:

* We recommend a coupling with a shaft of tolerance h8.
- Dimension T2 in size 50 is not indicated because there is only one slot.
- Dimension Y indicates the hole for centralized lubrication by means of grease.

Size	A	B	C				D1	D2	E	E1	E2	F		G2	H	L1	L2	M1	M	M3		1 P2	K1	J1	K2	J2	K3		T1			V Y X1				
50	32	15		37	4.5	20	17	32	8.	101	62	50	6	2	60	41	30	26	48	65	530	40	M4	7	M3	5	M4	8	20	-	106	6 - 369	21.8	5	8	4
65	35.0	20	53	52	5	26	23.5	46	8.	26.	78	65	8	3	75	51	36	330	63	80	540	53	5	8	M3	6	M5	10	23.5	18	106	3	30.5	0	8	4
80	37.5												0																						8	

Size	WEIGHT STROKE ZERO $[\mathrm{kg}]$	STROKE WEIGHT PER METER $[\mathrm{kg} / \mathrm{m}]$
$\mathbf{5 0}$	2.58	3.35
$\mathbf{6 5}$	5.56	5.4
$\mathbf{8 0}$	11.10	5.9

Electromechanical axis Mod. 5E...AS2

NOTE:

* We recommend a coupling with a shaft of tolerance h8.
- Dimension T2 in size 50 is not indicated because there is only one slot.
- Dimension Y indicates the hole for centralized lubrication by means of grease.

Size	A	B	C	${ }_{6} \mathrm{C} 1$	C2	${ }_{\varnothing} \mathrm{C} 3^{(\mathrm{H} 8)}$	D1	D2	E	E1	F	${ }_{6} \mathrm{G} 1^{(\mathrm{h} 8)}$	G2	H	L1	L2	M1	M2	M3	N	P1	P2	K1	J1	K2	J2	K3	J3	T1	T2	T3	V Y	Y X1	X2	W	Z1	Z2
50	32.5	15	37	37	4.5	20	17	32	8.5	100	50	6	2	60	354	238	200	48	65	5	30	40	M4	7	M3	5	M4	8	20	-	10	6	- 304	21.8	230	8	4
65	35	20	53	52	5	26	23.5	46	8.5	125	65	8	3	75	438	288	250	63	80	5	40	53	M5	8	M3	6	M5	10	23.5	18	10	6	- 373	30.5	280	8	4
80	35	30	68	68	6.5	38	30.5	60.5	11.5	165	80	10	3	95	548	368	330	78	100	8	55	64	M6	12	M4	8.5	M5	10	25	25	10	8	- 468	40.5	360	8	4

Size	CL min	CL max	Max applicable stroke	WEIGHT STROKE ZERO $[\mathrm{kg}]$	STROKE WEIGHT PER METER [kg/m]
$\mathbf{5 0}$	250	2000	Smax $=4262-\mathrm{CL}$	3.49	
$\mathbf{6 5}$	300	2000	Smax $=6212-\mathrm{CL}$	7.35	
$\mathbf{8 0}$	400	2000	Smax $=6132-\mathrm{CL}$	14.68	

Side clamping bracket Mod. BGS
Material: Aluminium

Supplied with:
$2 x$ clamps
TABLE NOTE:

* according to the span
(max admissible deflection) recommended value 500 mm

Mod.	Size	A	B	C1	C 2	${ }^{\circ}$ D1	${ }^{\circ}$ D2	E1	E2	H1	H2	P	Weight (g)
BGS-5E-M5	50	25	66	68	${ }^{*}$	5.5	9	82	45	6.4	6	10	45
BGS-5E-M5	65	25	81	85	${ }^{*}$	5.5	9	97	45	6.4	6	10	45
BGS-5E-M5	80	25	96	100	${ }^{*}$	5.5	9	112	45	6.4	6	10	45
BGS-5E-M6	50	25	66	68	${ }^{*}$	6.5	10.5	82	45	5.4	7	10	40
BGS-5E-M6	65	25	81	85	${ }^{*}$	6.5	10.5	97	45	5.4	7	10	40
BGS-5E-M6	80	25	96	100	${ }^{*}$	6.5	10.5	112	45	5.4	7	10	40

Perforated side clamping bracket Mod. BGA
Material: Aluminium

Mod.	Size	A1	A2	B	C1	C2	${ }_{\varnothing}$ D1	${ }_{\varnothing}$ D2	E1	E2	H1	H2	P	Weight (g)	
BGA-5E-M5	50	40	50	66	68	${ }^{*}$	5.5	9	82	65	6.4	6	7.5	60	
BGA-5E-M5	65	40	50	81	85		${ }^{*}$	5.5	9	97	65	6.4	6	7.5	60
BGA-5E-M5	80	40	50	96	100	${ }^{*}$	5.5	9	112	65	6.4	6	7.5		
BGA-5E-M6	50	40	50	66	68	${ }^{*}$	6.5	10.5	82	65	5.4	7	7.5	50	
BGA-5E-M6	65	40	50	81	85		$*$	6.5	10.5	97	65	5.4	7	7.5	55
BGA-5E-M6	80	40	50	96	100	${ }^{*}$	6.5	10.5	112	65	5.4	7	7.5	55	

Interface plate - profile on slider

The kit includes:
1x interface plate
$8 x$ screws $+8 x$ lock washers to connect the plate on the slider of the main axis
4x clamps
$8 x$ screws $+8 x$ lock washers
$8 \times$ screws $+8 \times$ lock wash
to connect the secondary
axis on the plate by means of clamps

Mod.	Size	A1	A2	D	E	S	
XY-S65-P50	65	150	162	85	70	12	
XY-S80-P50	80	190	182	85	85	12	
XY-S80-P65	80	190	185	100	85	12	

The kit includes:
1 x interface plate
$8 x$ screws $+8 x$ lock washers to connect plate on the slider
of the main axis
$4 x$ clamps
8 x screws +8 x lock washers to connect plate on the slider of the secondary axis by means of clamps

Interface plate - profile on slider - long arm

Mod.	Size	A1	A2	D	E	S	Weight (g)
XY-S50-P50-T	50	162	130	50	85	12	600
XY-S65-P50-T	65	170	150	65	85	12	750
XY-S65-P65-T	65	185	170	65	100	12	800
XY-S80-P50-T	80	185	190	85	85	12	960
XY-S80-P65-T	80	185	190	85	100	12	1010
XY-S80-P80-T	80	200	190	85	120	12	1100

Interface plate - Series 6E cylinder on slider

The kit includes:
1x interface plate
$4 x$ screws $+4 x$ lock washers
to connect the plate on the
slider of the axis
$2 x$ clamps
$4 x$ screws $+4 x$ lock washers
to fix the Series 6E cylinder
by means of clamps

Mod.	Size	A1	A2	Weight (g)
XY S50-6E32	50	72	101	11
XY-S65-6E32	65	72	101	11
XY-S65-6E40	65	85	101	11
$X Y$ S65-6E50	65	95	110	12
$X Y-S 80-6 E 32$	80	75	101	12
$X Y-S 80-6 E 40$	80	85	101	12
$X Y-S 80-6 E 50$	80	95	110	12
$X Y$ S80-6E63	80	106	110	12

kit includes：
1 x interface plate
$8 x$ screws $+8 x$ lock washers
to connect the plate on the
slider of the main axis，
screws and nuts for slot to connect the plate on the slider of the secondary axis

Mod．	Size	A1	A2	D	E	S	Nr of holes	Weight（g）
XY－S50－LL50	50	130	145	50	55	11	4	450
XY－S65－LL50	65	160	160	50	70	11	4	500
XY－S65－LL65	65	170	180	65	70	12	8	550
XY－S80－LL50	80	200	175	50	85	12	4	750
XY－S80－LL65	80	210	195	65	85	12	8	870
XY－S80－LL80	80	210	195	80	85	12		900

Mod．	Size	A1	A2	D	E	S	Nr of holes	Weight（g）
XY－S50－LR50	50	130	145	50	55	11	4	450
XY－S65－LR50	65	160	160	50	70	11	4	500
XY－S65－LR65	65	170	180	65	70	12	8	550
XY－S80－LR50	80	200	175	50	85	12	4	750
XY－S80－LR65	80	210	195	65	85	12	8	870
XY－S80－LR80	80	210	195	80	85	12	8	900

Fixed interface plate

The kit includes:
1x interface plate
4x interface
4x clamps screws to connect the clamps on the plate

| | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mod. | Size | A1 | A2 | ${ }_{\varnothing}$ D1 | ${ }_{\varnothing}$ D2 | H | I1 | I2 | S | |
| X-P50 | 50 | 95 | 140 | 9 | 5.5 | 6 | 45 | 80 | Weight (g) | |
| X-P65 | 65 | 120 | 140 | 10.5 | 6.5 | 7 | 50 | 100 | | |
| X-P80 | 80 | 120 | 160 | 13.5 | 8.5 | 9 | 50 | 10 | 100 | 12 |

Interface plate - Anti-rotation guides S. 45 / Cylinders S. 6E on slider

Mod.	Size	A1	A2	D	E	S	${ }_{0} \mathrm{M}^{(+10)}$	Y	Weight (g)
XY-S50-45N32	50	124	130	50	49	12	30	75	350
XY-S65-45N32	65	139	170	65	49	12	30	82.5	480
XY-S65-45N40	65	147.5	170	65	55	12	35	87	500
XY-S65-45N50	65	157	170	65	66.5	12	40	91.5	530
XY-S80-45N40	80	167.5	190	85	55	12	35	97	660
XY-S80-45N50	80	177	190	85	65	12	40	101.5	690
XY-S80-45N63	80	190.5	190	85	75	12	45	110	740

Mod.	Size	X1	X2	X3	X4	X5	A1	A2	E	D	S	Weight (g)
YZ-50-5V50	50	105	121	147	79	-	87	130	64.5	69	13	335
YZ-65-5V50	65	112.5	136.5	16	87	124.5	105	140	64.5	82	13	445
YZ-65-5V65	65	130	154	179.5	104.5	-	107	140	84.5	82	13	460
YZ-80-5V50	80	120.5	146.5	185.5	81.5	133.5	118	190	64.5	78	15	635
YZ-80-5V65	80	137.5	163.5	202.5	98.5	150.5	118	190	84.5	78	15	770
YZ-80-5V80	80	141	183.5	222.5	118.5	-	120	190	99.5	78	15	825

Centering ring Mod. TR-CG
Supplied with:
$2 x$ centering rings in steel

Mod.	M (h8)	N	P
TR-CG-04	$\emptyset 4$	$\emptyset 2.6$	2.5
TR-CG-05	$\varnothing 5$	$\varnothing 3.1$	3
TR-CG-06	$\varnothing 6$	$\varnothing 4.1$	4
TR-CG-08	Ø8	$\emptyset 5.1$	5
TR-CG-10	$\varnothing 10$	$\varnothing 6.1$	6

The kit includes:
1 x connection flange
$4 x$ screws $+4 x$ lock washers
to connect the flange
1 x locking set
$4 x$ screws $+4 x$ lock washers
to connect the gearbox

Kit to connect the gearbox

DIMENSIONS											
Mod.	Size	E1	E2	S	BCD	${ }_{8}{ }^{\text {A }}$	${ }_{0}$ D1	${ }_{\otimes}{ }^{\text {D2 }}$ (${ }^{(7)}$	T1	T2	Weight (g)
FR-5E-50	50	48	43	6	34	4.5	10	ø26	10	10	85
FR-5E-65	65	63	60	7	52	5.5	14	$\varnothing 40$	11	11	140
FR-5E-80	80	80	80	11	70	6.5	20	$\varnothing 60$	17	4	325

DIMENSIONS										
Mod.	Size	${ }_{\varnothing} \mathrm{D} 1^{(H 7)}$	A	${ }_{\varnothing} \mathrm{D} 2$	${ }_{\varnothing}$ D3	B	C	E	F	Weight (g)
FRH-5E-50	50	40	4	52	5.5	8	51	50	34	170
FRH-5E-65	65	60	4	70	6.5	10	59	65	47	530

Slot nut for sensor CSH
Material：steel
Material：steel

Supplied with：
$2 x$ nuts

Mod．	Size	M
PCV－5E－CS－M3	$50-65-80$	M3
PCV－5E－CS－M4	$50-65-80$	M4

Mod．	Size	M
PCV－5E－C8－M5	80	M5
PCV－5E－C8－M6	80	M6

Parallel connection kit

The kit includes：
1x parallel shaft
$2 x$ expansion couplings

EXAMPLE：

PS－5E－65－1400 corresponds to a parallel connection for axes positioned at interaxis $\mathrm{I}=1400 \mathrm{~mm}$

Mod．	Size	1 min	1 max	${ }_{\varnothing}$ D1	${ }_{\varnothing}$ D2	E	Transmission torque
PS－5E－50－0000	50	200	2000	22	32	26	see graph
PS－5E－65－0000	65	250	2000	25	42	35.5	see graph
PS－5E－80－0000	80	300	2000	30	56	40	see graph

INTERAXIS ACCORDING TO THE MAXIMUM ADMISSIBLE TORQUE

Size 50×50

Cmax = max applicable torque
$i=$ interaxis between the two 5E axes
01 = lag error 0.1 mm
$02=$ lag error 0.2 mm
03 = lag error 0.3 mm

Size 80×80
Cmax = max applicable torque
$i=$ interaxis between the two 5E axes
01 = lag error 0.1 mm
02 = lag error 0.2 mm
03 = lag error 0.3 mm

Sizes 50, 65, 80

The 5 V vertical electromechanical axis represents the ideal solution for applications that require vertical displacements as for example pick and place, dispensing, loading/unloading systems (plastic injection moulding, assembly, machining) or palletisers. Available in three sizes, 50, 65 and 80 , it can be used as vertical axis of a x, y, z gantry system or cantilever in applications that require to move loads for long strokes quickly and thus optimise the machine cycle time.

The new Series 5 V axes are mechanical linear actuators with toothed belt. Thanks to a specific pulley system with omega configuration, these axes allow to reduce to a minimum the inertia of the system. Furthermore, the presence of one or more recirculating ball guides (HS version) as well as of a special self-supporting square profile provides high stiffness and resistance to dynamic loads, ensuring a precise and fast displacement of heavy loads.

High dynamics
»Easy to integrate in $x-y-z$ systems Strokes up to 1500 mm
HS version for High Stiffness applications

Version with integrated shock absorbers

GENERAL DATA

Construction	electromechanical axis with toothed belt
Design	open profile with protection plate
Operation	linear multi-position actuator
Sizes	$50,65,80$
Strokes	max 1500 mm
Type of guide	internal, with recirculating balls (cage type)
Fixing	by means of dedicated accessories
Mounting motor	on both sides
Operating temperature	$-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$
Protection class	IP 20
Lubrication	centralized lubrification by means of internal channels
Repeatability	$\pm 0.05 \mathrm{~mm}$
Duty cycle	100%
Use with external sensors	CSH and CST magnetic switches by means of accessories Mod. SMS

[^2]| CODING EXAMPLE | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5V | S | 050 | TBL | 0200 | A | S | 1 | |
| 5 V | serkes | | | | | | | |
| S | | | | | | | | |
| 050 | | | | | | | | |
| TBL | $\xrightarrow{\text { TRensmsssiow }}$ | | | | | | | |
| 0200 | | | | | | | | |
| A | $\substack{\text { Versionl } \\ A=\text { standard }}$ | | | | | | | |
| S | | | | | | | | |
| 1 | | | | | | | | |
| | TYPE OF END CAP：＝standardSA＝shock absorber integrated | | | | | | | |

MECHANICAL CHARACTERISTICS

${ }^{(A)}$ Value refers to a covered distance of 2000 Km with fully supported system．

	Measuring unit	Size 50	Size 65	Size 80
RECIRCULATING BALL GUIDE（CAGE TYPE）				
Version		A	A	A
Type of slider		S	S	S
Number of RDS blocks	pcs	2	2	2
Dynamic load of RDS blocks（C）	N	11640	28400	44600
Max admissible load（ $\mathrm{C}_{\text {max }} \mathrm{z}, \mathrm{C}_{\text {max }} \mathrm{y}$ ）	N	$3100{ }^{(4)}$	$8300{ }^{(4)}$	$13100^{(4)}$
Max admissible moment（ $M_{\text {max }} \times$ ）	Nm	22.44	96.00	216.60
Max admissible moment（ $M_{\text {max }} y, M_{\text {max }} \times z$ ）	Nm	45.30	269.40	525.00
Max linear speed of mechanics（ $\mathrm{V}_{\text {max }}$ ）	m／s	3	3	3
Max linear acceleration of mechanics（ $\mathrm{a}_{\text {max }}$ ）	$\mathrm{m} / \mathrm{s}^{2}$	30	30	30
PROFILE				
Mass in movement	kg	0.45	1.10	2.30
Mass in movement per stroke meter	kg／m	0.13	0.21	0.41
Moment of surface inertia ly	mm ${ }^{4}$	$1.89 \cdot 10^{5}$	$4.94 \cdot 10^{5}$	$1.23 \cdot 10^{6}$
Moment of surface inertia lz	mm^{4}	$2.48 \cdot 10^{5}$	$6.97 \cdot 10^{5}$	$1.68 \cdot 10^{6}$
TOOTHED BELT				
Type		25 AT 5 HP	40 AT 5 HP	45 AT 10 HP
Pitch	mm	5	5	10
Safe loads	N	See the diagram	See the diagram	See the diagram
PULLEY				
Effective diametre of the pulley	mm	47.75	57.30	76.39
Number of teeth	z	30	36	24
Linear movement per pulley round	$\mathrm{mm} /$ round	150	180	240

(7)

COMPONENTS	MATERIALS
1. End cap	Aluminium
2. Idler	Aluminium
3. Pulley	Steel
4. Omega body	Aluminium
5. Cover	Aluminium
7. Belt	PU + Steel
8. Recirculating ball guide	Steel

HOW TO CALCULATE THE LIFE OF THE AXIS 5V

The correct dimensioning of the axis 5 V , used individually or in a cartesian system with several axes, you need to consider some facts, both static and dynamic. Among these, the most important are described on the following pages.

CALCULATION OF LIFE [km]

$\mathrm{L}_{\text {eq }}=$ Life of the axis $[\mathrm{km}]$
$\mathrm{C}_{\text {eq }}=$ Maximum admissible load [N$]$
$\mathrm{C}_{\text {eq }}^{\text {ma }}=$ Equivalent load $[\mathrm{N}]$
$\mathrm{f}_{\mathrm{w}}=$ safety coefficient according to the working conditions

CALCULATION OF EQUIVALENT LOAD

When compression/traction and side loads as well as bending or torque moments act on the system, you need to calculate the equivalent load acting on the system.
$\mathrm{C}_{\text {eq }}=$ Equivalent load [N]
$\mathrm{F}_{y}^{\text {eq }}=$ Force acting along the Y -axis $[\mathrm{N}]$
$\mathrm{F}_{\mathrm{z}}^{y}=$ Force acting along the Z -axis [N]
$\mathrm{C}_{\text {ma }}^{2}=$ Max admissible load [N]
$\mathrm{M}_{\mathrm{x}}^{\text {ma }}=$ Moment along X -axis [Nm]
$\mathrm{M}_{\mathrm{y}} \times$ Moment along Y -axis [Nm]
$\mathrm{M}^{y}=$ Moment along Z-axis [Nm]
$\mathrm{M}_{(\mathrm{x}, \text { ma) }}=$ Max admissible moment along X-axis [Nm]
$\left.M_{(\text {(, ma) })}^{(x, \text { ma }}\right)=$ Max admissible moment along Y -axis [Nm]
$\mathrm{M}_{(\mathrm{z}, \mathrm{ma})}=$ Max admissible moment along Z-axis [Nm]

$$
L_{e q}=\left(\frac{C_{m a}}{C_{e q} \cdot f_{w}}\right)^{3} \cdot 2000
$$

$$
C_{e q}=\left|F_{y}\right|+\left|F_{z}\right|+C_{m a} \cdot\left|\frac{M_{x}}{M_{x, m a}}\right|+C_{m a} \cdot\left|\frac{M_{y}}{M_{y, m a}}\right|+C_{m a} \cdot\left|\frac{M_{z}}{M_{z, m a}}\right|
$$

TRANSMISSIBLE FORCE

Curves calculated with $\mathrm{fw}=1$
Ceq $=$ Equivalent load applied on the axis [kN]
Leq = Life of the axis [km]

EQUIVALENT LOAD

To determine the moment acting on the axis $x, M x$, in an accurate way, refer to the following formula:
$M x=F y \cdot(K+K 1)$
where:
$\mathrm{Mx}=$ Moment along X -axis [Nm]
Fy = Force acting along the Y -axis [N]
$\mathrm{K}=$ fixed distance for axis $5 \mathrm{E}[\mathrm{mm}]$
$\mathrm{K} 1=$ application arm [mm]
NOTE: here below, the " K " values for the three sizes

- K = 21 mm (5VS050)
$-\mathrm{K}=28 \mathrm{~mm}$ (5VS065)
$-\mathrm{K}=36 \mathrm{~mm}$ (5VS080)

$\mathrm{f}=$ generated deflection [mm]
$\mathrm{L}=$ arm length [mm]

$\mathrm{f}=$ generated deflection [mm]
$\mathrm{L}=$ arm length [mm]

$\mathrm{f}=$ generated deflection [mm]
$\mathrm{L}=$ arm length [mm]

ACCESSORIES FOR SERIES 5 V

Kit to connect the
gearbox gearbox

Magnet kit
Mod. SMS-5V-U

Sensor holder kit Mod. SMS-5V

Centering ring
Mod. TR-CG

All accessories are supplied separately from the axis.
Together with the axis, a kit is supplied containing:

- covers to close the holes on the endcap
- centering bushings for the slider
- nipples for greasing

$+=$ add the stroke

Siz	A	B	${ }_{\varnothing} \mathrm{C}$	${ }_{\varnothing} \mathrm{C} 1$	C2	${ }^{\text {C3 }}{ }^{(\mathrm{h} 8)}$	D	E F	H	L1	L2	M1	M2	M3	M4	PA1	PA2	PA	PB	PB	PB3	X2	W	K1	K2	K3xJ3				
50	M5x7.5	M5x7.5	72	52	4.5	26	30	2050	60	380	350	230	65	133	18540	14.5	20	40	21	25	50	94.3	260	M4x4.7	M3x6	M5x7.5	8	4	20	10
65	M6x9	M6x9	98	68	4.5	38	37	20	77.5	430	39	27	85	168	21060	20	25	50	26	31.5	63	118	300	M 5×4.7	M3x6	M6x10	8	4	23.5	1810
80	8×12	12		80	5											24	32	65	37	35	70		395	M6x5		8×18			825	

Size	WEIGHT STROKE ZERO $[\mathrm{kg}]$	STROKE WEIGHT PER METER $[\mathrm{kg} / \mathrm{m}]$
$\mathbf{5 0}$	2.15	3.35
$\mathbf{6 5}$	4.6	5.4
$\mathbf{8 0}$	8.9	5.9

The kit includes:
$1 x$ connection flange
$4 x$ screws $+4 x$ lock washers
to connect the flange
1 x locking set
$4 x$ screws $+4 x$ lock washers
to connect the gearbox

DIMENSIONS											
Mod.	Size	E1	E2	S	BCD	${ }_{\varnothing}{ }^{\text {A }}$	${ }_{\varnothing}$ D1	${ }_{\varnothing} \mathrm{D}^{\left({ }^{(H 7)}\right.}$	T1	T2	Weight (g)
FR-5V-50	50	65	65	6	52	5.5	14	$\emptyset 40$	10	-	130
FR-5V-65	65	84	84	9	70	6.5	20	60	12	3.5	300
FR-5V-80	80	115	115	13	100	10.5	25	80	18	4.5	620

Magnet kit Mod. SMS-5V-U
Supplied with:
1x plate
1x magnet
2x locking screws

Series DRWB drives for the control of electric actuation

Drives for Brushless motors,
sizes in power classes 100, 400, 750, 1000 W

The Camozzi drives Series DRWB have been designed to control the movement of the Camozzi electromechanical actuators (Series 5E and Series 6E).

The servo drives DRWB, compact and especially optimized for the brushless Camozzi motors, are completely digital and available in the power classes 100, $400,750,1000 \mathrm{~W}$. Equipped with vector mode and the function of Autotuning and containment of vibrations, they are made in such a way to easily perform replacements and to have a two-line alphanumeric display with 4 control keys on the servo drive.
A digital pulse interface allows control of the direction, position, speed and torque. It is possible to control the drives with analogic signals.
" Completely digital drives
» PLC function programmable with the Camozzi QSet configuration software
» Control of speed, position and torque (torque only for Series DRWB)
» 64 positions programmable through the QSet
Self-compensation of errors

GENERAL CHARACTERISTICS

Mod. DRWB-W01-2-D-E-A, DRWB-W04-2-D-E-A, DRWB-W07-2-D-E-A, DRWB-W10-2-D-E-A

Power	100 W (Mod. DRWB-W01-2-D-E-A) 400 W (Mod. DRWB-W04-2-D-E-A) 750 W (Mod. DRWB-W07-2-D-E-A) 1000 W (Mod. DRWB-W10-2-D-E-A)
Electrical supply	$\begin{gathered} 200 \div 240 \mathrm{~V} \mathrm{AC}(\pm 10 \%) \text { single or three phase } \\ 50 \div 60 \mathrm{~Hz}(\pm 5 \%) \end{gathered}$
Number of phases	1
Maximum current	1.5 A (Mod. DRWB-W01-2-D-E-A) 4.1 A (Mod. DRWB-W04-2-D-E-A) 7.5 A (Mod. DRWB-W07-2-D-E-A, Mod. DRWB-W10-2-D-E-A)
Logic supply	$200 \div 240$ V AC ($\pm 10 \%)$ $50 \div 60 \mathrm{~Hz}(\pm 5 \%)$ single phase
Maximum logic current	0.5 A max.
OUTPUT CURRENT	
Continuous current (effective)	0.9 A (Mod. DRWB-W01-2-D-E-A) 2.5 A (Mod. DRWB-W04-2-D-E-A) 5.1 A (Mod. DRWB-W07-2-D-E-A, Mod. DRWB-W10-2-D-E-A)
Peak current (effective)	2.7 A (Mod. DRWB-W01-2-D-E-A) 7.5 A (Mod. DRWB-W04-2-D-E-A) 15.3 A (Mod. DRWB-W07-2-D-E-A, Mod. DRWB-W10-2-D-E-A)
Maximum duration of peak current	1 second
Type of control	IGBT PWM vector control
Controller sampling rate	Current, speed and position: 15 kHz
Motor types supported	AC servo motors
Status of LED	Red: Error Green: Ready
OPERATING MODES	
Encoder interface	Operating voltage + 5 VDC $\pm 5 \%$ @ 400 mA
Communication interface	USB 2.0
Parameterisable //O interface	Digital Inputs [11..I9], (single-end, optocoupler) Digital Outputs [01..O4], (optocoupler) BRAKE Output [CN2_BRK], max. 1 A DC
Feedback	External transducer Activation threshold $+\mathrm{HV}>370 \mathrm{VDC}$ Activation threshold $+\mathrm{HV}<360 \mathrm{VDC}$ Tolerance $\pm 5 \%$
Monitoring functions	$\begin{gathered} \text { Short circuit, overvoltage (}>390 \mathrm{VDC} \pm 5 \% \text {), } \\ \text { undervoltage (}<60 \mathrm{VDC} \text {); } \\ \text { position error, encoder error, motor phase monitoring, } \\ \text { overtemperature D2 }\left(\text { IGBT }>90^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right) \text {, motor overtemperature } \end{gathered}$
Autotuning	with automatic mass inertia calculation
VSF (vibration suppression)	$01 \mathrm{~Hz} \div 200 \mathrm{~Hz}$
Other functions	Friction compensation, gear play compensation
Ambient conditions	Operating temperature $0^{\circ} \mathrm{C} \div 40^{\circ} \mathrm{C}$ (above $55^{\circ} \mathrm{C}$ only with air conditioning) Storage temperature $-20^{\circ} \mathrm{C} \div 65^{\circ} \mathrm{C}$

UAir humidity $20 \% \div 85 \%$ (non-condensing)
Operating altitude < 1000 m above sea level
Vibration $5.88 \mathrm{~m} / \mathrm{s}(10 \mathrm{~Hz} \div 60 \mathrm{~Hz})$
Protection class IP20

CODING EXAMPLE

DRWB	W01	-	2	-	D	-	E		A
DRWB ${ }^{\text {series }}$									
W01	SIZE W:W01 $=100 \mathrm{w}$ $\mathrm{W} 04=400 \mathrm{~W}$$\mathrm{~W}, ~$$\mathrm{~W}=750 \mathrm{~W}$ $W 10=1000 \mathrm{~W}$								
2	SUPPLY: $2=220 \mathrm{~V} \mathrm{AC}$								
D	COMMUNICATION D = Digital I/O and Analog								
E	FEEDBACK: $\mathrm{E}=$ incremental encoder 13 bit								
A	$\begin{aligned} & \text { VERSIONS: } \\ & \text { A = Standard } \end{aligned}$								

Drive Mod. DRWB-W01-2-D-E-A
Drive for the Camozzi Brushless motors

Drive Mod. DRWB-W04-2-D-E-A
Drive for the Camozzi Brushless motors

Mod.	Power	Supply	Encoder
DRWB-W04-2-D-E-A	400 W	230 V AC	13 bit

Drives Mod. DRWB-W07-2-D-E-A and Mod. DRWB-W10-2-D-E-A
New size
Drives for the Camozzi Brushless motors

Mod.	Power	Supply	
DRWB-W07-2-D-E-A	750 W	230 V AC	Encoder
DRWB-W10-2-D-E-A	1000 W	230 V AC	

Cables for Brushless (MTB) motor, 1000W IP65

Mod.	Brake	Pins	$\mathrm{L}=$ cable (m)
EC-4704P1-B300	-	4	3
EC-4704P1-B500	-	4	5
EC-4704P1-BA00	-	4	10

Mod.	Pins	$\mathrm{L}=$ cable (m)
EC-3209P3-B300	9	3
EC-3209P3-B500	9	5
EC-3209P3-BA00	9	10

Brake cables for Brushless (MTB) motor, size 1000W IP65

	Pins	$\mathrm{L}=$ cable (m)
Mod.	2	3
EC-4902P1-B300	2	5
EC-4902P1-B500	2	10
EC-4902P1-BA00		

Series DRCS drives for Stepper motors

One-size full digital drives
with bluetooth system and NFC integrated

The Series DRCS drives, compact and optimized in one size, have been specially configured for all small and medium-sized Camozzi Stepper motors. They are capable of controlling Stepper motors with 2 phases and micro stepping feed. They are able to calculate the normal resonance frequency of the motors and optimize their driving. The use of the micro stepping technique (up to $1 / 16$ of steps) enables the drive to almost replicate a sinusoidal current while considerably reducing the natural resonance of the motor itself. The availability of 8 inputs allows the realization of a table of $\mathbf{2 5 6}$ commands, for each of which it is possible to set position, speed, acceleration and deceleration.

Each command can be absolute or relative. Furthermore it is possible to control driving in frequency by using the Step and Direction commands. The frequency defines the speed, while the number of steps defines the position. The Series DRCS drives are equipped with the serial protocol CANopen CiA301 and CiA402 by means of which it is possible to run commands for motion control and the integration for the monitoring of the drive's state. To configure the drive, wired (USB 2.0) or wireless (according to Bluetooth standards; BL-BLE) connections can be used. Thanks to an innovative system that takes advantage of the NFC technology, it is possible to extract production and statistic data regarding the use of the drive, as these have now become essential parameters in order to approach the 4.0 industry.
" Full digital drive
» PLC function programmable with the Camozzi QSet configuration software
Feedback by means of incremental encoder
» NFC system integrated
"Self-compensation of errors
» 256 programmable positions (control of speed and position)
" Wire configuration by means of USB 2.0 and wireless configuration by means of bluetooth protocol BL-BLE
» Can be controlled in frequency (step and direction), digital I/O and serial CANopen protocol

CODING EXAMPLE

DRCS	-	A 05	-	8	-	D	-	0	-	A

DRCS	SERIES
A05	sIZE AT MAX CURRENT:
8	SUPPLY: $8=48 \vee \mathrm{VC}$
D	COMMUNICATION $\mathrm{D}=$ Digital $1 / \mathrm{O}$ and impulse frequency C = CANopen, Digital I/O and impulse frequency
0	FEEDBACK: 0 = Feedbac
A	VERSIONS: $A=$ standard $B=$ Bluetooth BL-BLE

Mod.	Max current	Logic supply	Power supply	Communication
DRCS-A05-8-D-0-A	7 A	24 V DC	$24 \div 48 \mathrm{~V}$ DC	Digital I/O and impulse frequency
DRCS-A05-8-C-0-A	7 A	24 V DC	$24 \div 48 \mathrm{~V}$ DC	CANopen, Digital I/O and impulse frequency
DRCS-A05-8-D-0-B	7 A	24 V DC	$24 \div 48 \mathrm{~V} \mathrm{DC}$	Digital I/O and impulse frequency
DRCS-A05-8-C-0-B	7 A	24 V DC	$24 \div 48 \mathrm{~V}$ DC	CANopen, Digital I/O and impulse frequency

Cable for Series DRCS drive without brake

Cable for Series DRCS drive without brake (Nema 34 only)
New

Mod.	Motor	Brake	Pins	
EC-200522-B300	Stepper	-	5	
EC-200522-B500	Stepper	-	5	
EC-200522-BA00	Stepper	-	5	5

Encoder cable for Series DRCS drive
\square

Mod．	Motor	Brake	Pins	
EC－220A22－B300	Stepper	-	8	
EC－220A22－B500	Stepper	-	8	
EC－220A22－BA00	Stepper	-	8	8

Cable for Series DRCS drive power supply

CAN terminating resistor for Series DRCS drives New

USB to Micro USB cable Mod. G11W-G12W-2

Mounting brackets for DIN rail
DIN EN 50022 (mm 7,5 x 35 - width 1)
Supplied with:
$2 x$ plates
2x screws M4x6 UNI 5931

Mod.
PCF-E520

Series MTB motors for electric actuation

The Camozzi motors Series MTB have been designed to be connected in an easy and practical way to the new product range within electrical actuation, being able to drive both electromechanical cylinders and axes.
The Series MTB of synchronous AC Brushless motors is available with a power of 100, 400, 750, 1000 W.
» Low inertia motors
»Available with or without brake
» With incremental 13 bit encoder
»Different sizes or power classes available
» IP65 version available

The standard motors are equipped with a 13 bit encoder with 10,000 increments per cycle and are offered with or without a motor brake. Due to the high dynamics of these motors, it is possible to guarantee a constant torque at any speed.
Due to the low mass inertia, they are particularly suitable for high work dynamics, like sudden changes in direction or high moving frequencies.

GENERAL DATA

Power	100 W (Mod. MTB-010-...) 400 W (Mod. MTB-040-...) 750 W (Mod. MTB-075-...) 1000 W (Mod. MTB-100...)
Type of motor	permanently excited synchronous servo motor
Magnet	Neodymium, iron and boron (NdFeB)
Housing	Aluminium
Colour	black
Protection class: motor on the shaft connector	$\begin{aligned} & \text { IP65 } \\ & \text { IP40 } \\ & \text { IP20 } \end{aligned}$
Insulation class	class A
Shaft end	no machining
Nominal torque	0.32 Nm (100 W) - 1.27 Nm (400 W) - 2.4 Nm (750 W) - 4.77 Nm (1000 W)
Peak torque	$3 \times$ nominal torque
Braking torque (only for motors with brake)	0.32 Nm (100 W) - 1.27 Nm (400 W) - 2.4 Nm (750 W) - 4.77 Nm (1000 W)
Service life	$>20.000 \mathrm{~h}$ (at nominal load)
Motor connection Encoder connection	cable (300 mm) available out of the motor cable (300 mm) available out of the encoder (motors with 1 KW power are equipped with an outgoing motor connector)
Cooling	with an integrated radiator
Thermal monitoring	not available
Encoder	incremental 13-bit TTL encoder, 10000 pulses/revolution
Ambient temperature Storage temperature	$\begin{aligned} & 0^{\circ} \mathrm{C} \div 40^{\circ} \mathrm{C} \\ & -15^{\circ} \mathrm{C} \div 70^{\circ} \mathrm{C} \end{aligned}$
Air humidity	up to 80% of relative air humidity
Max. installation height	at below 1000 metres above sea level

CODING EXAMPLE

MTB	-	010	-	2	-	0	-	E

MTB	SERIES
010	POWER： $010=100$ $040=400 \mathrm{~W}$ $075=750 \mathrm{~W}$ $100=1000 \mathrm{~W}$
2	$\underbrace{}_{\substack{\text { SUPPLY：} \\ 2=220 \mathrm{~V} \text { DC }}}$

Series MTB Brushless motors－dimensions

Mod．	Power	D	E	W	${ }_{\varnothing} \mathrm{DM}^{(\mathrm{n} 6)}$	M	${ }_{6} \mathrm{DC}$	C	TF	${ }_{\varnothing} \mathrm{AB}$	BB	Weight（Kg）
MTB－010－2－0－E	100 W	110.5	42	32	8	25	30 f7	2.5	31.8	3.4	12	0.63
MTB－010－2－0－EP	100 W	110.5	42	32	8	25	30 f7	2.5	31.8	3.4	12	0.75
MTB－010－2－F－E	100 W	139	42	32	8	25	30 f7	2.5	31.8	3.4	12	0.76
MTB－010－2－F－EP	100 W	139	42	32	8	25	30 f7	2.5	31.8	3.4	12	0.9
MTB－040－2－0－E	400 W	121.5	60	46.5	14	30	50 h 7	3	49.5	5.5	7.5	1.31
MTB－040－2－0－EP	400 W	121.5	60	46.5	14	30	50 h 7	3	49.5	5.5	7.5	1.4
MTB－040－2－F－E	400 W	159	60	46.5	14	30	50 h 7	3	49.5	5.5	7.5	1.86
MTB－040－2－F－EP	400 W	159	60	46.5	14	30	50 h 7	3	49.5	5.5	7.5	1.8
MTB－075－2－0－E	750 W	140	80	56.5	19	40	70 f6	3	63.6	6.6	9	2.66
MTB－075－2－0－EP	750 W	140	80	56.5	19	40	70 f6	3	63.6	6.6	9	2.75
MTB－075－2－F－E	750 W	176	80	56.5	19	40	70 f6	3	63.6	6.6	9	3.32
MTB－075－2－F－EP	750 W	176	80	56.5	19	40	70 f6	3	63.6	6.6	9	3.45
MTB－100－2－0－EP	1000 W	141	130	113	24	55	110	3	102.5	95	12	5.8
MTB－100－2－F－EP	1000 W	175	130	113	24	55	110	3	102.5	95	12	7.7

camozz

Torque-speed curves

MTB-010..
C = torque
$\mathrm{n}=$ number of revolutions per minute
The continuous line represents the peak torque of the motor.
The dashed line represents the nominal torque of the motor.

MTB-075..

C = torque

$\mathrm{n}=$ number of revolutions per minute
The continuous line represents the peak torque of the motor.
The dashed line represents the nominal torque of the motor.

MTB-040..
$C=$ torque
$\mathrm{n}=$ number of revolutions per minute
The continuous line represents the peak torque of the motor.
The dashed line represents the nominal torque of the motor.

MTB-100..
$C=$ torque
$\mathrm{n}=$ number of revolutions per minute
The continuous line represents the peak torque of the motor.
The dashed line represents the nominal torque of the motor.

Series MTS motors for electric actuation

Stepper motors with Nema 23, 24, 34 fixing flange

The new Camozzi motors Series MTS have been designed to be connected in an easy and practical way to the new product range within electrical actuation, being able to drive both electromechanical cylinders and axes.

The new Series MTS electrical Stepper motors are available in the sizes Nema 23, Nema 24 and Nema 34.
Each motor version comes with its own driving version that is interfaceable with the QSet configuration software, especially developed by Camozzi in order to simplify the setting up of the electric actuator.

GENERAL DATA

	Models: MTS-23-18-060-0-0-S-C MTS-23-18-060-0-0-E-C MTS-23-18-060-0-F-E-C MTS-23-18-120-0-0-S-CP	Models: MTS-24-18-250-0-0-S-C MTS-24-18-250-0-0-E-C MTS-24-18-250-0-F-E-C MTS-24-18-250-0-0-S-CP	Models: MTS-34-18-701-0-0-E-C
Shaft	single	single	single
Leads	4	4	5
Length	41 mm	85 mm	125.5 mm
Holding torque	$\begin{aligned} & 0.6 \mathrm{Nm} \\ & 0.6 \mathrm{Nm} / 1.2 \mathrm{Nm} \text { (Nema } 23 \text { IP65 only) } \end{aligned}$	2.5 Nm	7.1 Nm
Current per phase	4.5 A/Phase	4.5 A/Phase	7 A/Phase
Resistance	0.48 ת/Phase	0.65 ת/Phase	0.49 /Phase
Motor inertia	$135 \mathrm{~g} \cdot \mathrm{~cm}^{2}$	$900 \mathrm{~g} \cdot \mathrm{~cm}^{2}$	2750 g.cm ${ }^{2}$
Dielectric strength	500 V AC/min	$500 \mathrm{~V} \mathrm{AC/min}$	$500 \mathrm{~V} \mathrm{AC/min}$

CODING EXAMPLE

Series MTS Stepper motors－dimensions

Mod．	Brake	Encoder	Nema	DS	DE	DF	HE	E	L	${ }_{\varnothing} \mathrm{DM}^{(\mathrm{hr7})}$	M	${ }_{\varnothing} \mathrm{DC}^{\text {（is } 10)}$	C	TF	${ }_{\varnothing} \mathrm{AB}$	BB	Weight（Kg）
MTS－23－18－060－0－0－S－C	－	－	23	－	－	41	－	56.4	300 ± 10	6.35	20.6	38.1	1.6	47.14	5.1	5	0.42
MTS－23－18－120－0－0－S－CP	－	－	23	41	－	－	74	56.4	300 ± 10	6.35	20.6	38.1	1.6	47.14	5.1	7	0.8
MTS－23－18－060－0－0－E－C	－	＊	23	31.5	－	64.5	73.6	56.4	200 ± 50	6.35	20.6	38.1	1.6	47.14	5.1	7	0.42
MTS－23－18－060－0－F－E－C	＊	＊	23	31.5	64.5	105.5	73.6	56.4	200 ± 50	6.35	20.6	38.1	1.6	47.14	5.1	7	0.62
MTS－24－18－250－0－0－S－C	－	－	24	－	－	85	－	60	300 ± 10	8	20.6	38.1	1.5	47.14	4.5	7	1.41
MTS－24－18－250－0－0－S－CP	－	－	24	85	－	－	80	60	300 ± 10	8	24.5	38.1	1.5	47.14	4.5	8	1.6
MTS－24－18－250－0－0－E－C	－	x	24	78	－	111	77.4	60	200 ± 50	8	20.6	38.1	1.5	47.14	4.5	8	1.41
MTS－24－18－250－0－F－E－C	＊	\times	24	78	111	152	77.4	60	200 ± 50	8	20.6	38.1	1.5	47.14	4.5	8	1.62
MTS－34－18－701－0－0－E－C	－	－	34	125.5	－	－	98	86	300 ± 10	14	37	73	2	69.6	6.5	10	3.8

Torque-speed curves

Nema 23 motors
Mod. MTS-23-18-060-0-0-S-C
Mod. MTS-23-18-060-0-0-E-C
Mod. MTS-23-18-060-0-F-E-C
$\mathrm{C}=$ torque $[\mathrm{Nm}]$
$\mathrm{n}=$ revolutions per minute [Rpm]

Nema 24 motors
Mod. MTS-24-18-250-0-0-S-C
Mod. MTS-24-18-250-0-0-E-C
Mod. MTS-24-18-250-0-F-E-C
Mod. MTS-24-18-250-0-0-S-CP
$C=$ torque $[\mathrm{Nm}]$
$\mathrm{n}=$ revolutions per minute [Rpm]

Nema 23 motors IP65
Mod. MTS-23-18-120-0-0-S-CP
$\mathrm{C}=$ torque $[\mathrm{Nm}]$
$\mathrm{n}=$ revolutions per minute $[\mathrm{Rpm}]$

Nema 34 motors
Mod. MTS-34-18-701-0-0-E-C
$\mathrm{C}=$ torque $[\mathrm{Nm}]$
$\mathrm{n}=$ revolutions per minute [Rpm]

Series GB

The Series GB planetary gearboxes, by means of a planetary gear system, enable the reduction of the angular speed and the increase of transmittable torque. These gearboxes can be used with the Series 5E electromechanical axes.

Available in 3 sizes with 4 different reduction ratios, the Series GB planetary gearboxes can be supplied in two different configurations, in-line or orthogonal.
All gearboxes are equipped with interface flanges for the connection to the Camozzi Series MTB and Series MTS motors.

CODING EXAMPLE

GB	-	040	=	03	-	D	=	0100
GB	GEARBOX							
040	$\begin{aligned} & \text { SIZE: } \\ & 040=\varnothing 40 \\ & 060=\varnothing 60 \\ & 080=\varnothing 80 \\ & 120=\varnothing 120 \end{aligned}$							
03	REDUCTION RATIO: $03 i=3$ $05 i=5$ $07 \mathrm{i}=7$ $10 \mathrm{i}=10$							
D	$\begin{aligned} & \text { TYPE: } \\ & \mathrm{D}=\text { straight } \\ & \mathrm{A}=\text { angular } \end{aligned}$							
0100	PREPARATION OF THE MOTOR: $0100=$ Brushless 100 W (size 040 only) $0400=$ Brushless 400W (size 060 only) $0750=$ Brushless 750W (size 080 only) $1000=$ MTB-100... $0024=$ Nema 24							

BACKLASH

Mod.
GB-040-03-D-0100
:---
GB-060-07-D-0024

	$<10^{\prime}$	14	35	40	3	52
GB-060-07-D-0024	$<10^{\prime}$	14	35	40	3	52
GB-080-03-D-0750	$<7^{\prime}$	14	35	40	3	52

GB-080-05-D-0750	$<7^{\prime}$	20	40	60	3	70	M6 $\times 10$	103.5	80	80	19	90	M6 x 15
GB-080-07-D-0750	$<7^{\prime}$	20	40	60	3	70	M6 $\times 10$	103.5	80	80	19	90	M6 $\times 15$
GB-080-10-D-0750	$<7^{\prime}$	20	40	60	3	70	M6 $\times 10$	103.5	80	80	19	90	M6 $\times 15$
GB-080-03-D-0024	$<7^{\prime}$	20	40	60	3	70	M6 $\times 10$	93.5	80	80	8	66.7	M4 $\times 10$
GB-080-05-D-0024	$<7^{\prime}$	20	40	60	3	70	M6 $\times 10$	93.5	80	80	8	66.7	M4 $\times 10$
GB-080-07-D-0024	$<7^{\prime}$	20	40	60	3	70	M6 $\times 10$	93.5	80	80	8	66.7	M4 $\times 10$
GB-080-10-D-0024	$<7^{\prime}$	20	40	60	3	70	M6 $\times 10$	93.5	80	80	8	66.7	M4 $\times 10$
GB-120-03-D-1000	$<7^{\prime}$	25	55	80	4	100	M10 $\times 16$	136.5	130	115	24	115	M8 $\times 18$
GB-120-05-D-1000	$<7^{\prime}$	25	55	80	4	100	M10 $\times 16$	136.5	130	115	24	115	M8 $\times 18$
GB-120-07-D-1000	$<7^{\prime}$	25	55	80	4	100	M10 $\times 16$	136.5	130	115	24	115	M8 $\times 18$
GB-120-10-D-1000	$<7^{\prime}$	25	55	80	4	100	M10 $\times 16$	136.5	130	115	24	115	M8 $\times 18$

Mod.	BACKLASH	${ }_{\varnothing} \mathrm{DS}^{(h 7)}$	LS	${ }_{\varnothing} \mathrm{DC}^{(h 7)}$	LC	${ }_{\varnothing} \mathrm{CC}$	TC x Deep	EA	EB	EC	${ }_{\varnothing}$ DG	${ }_{\varnothing}$ DM	${ }_{\varnothing} \mathrm{CM}$	TM x Deep	Weight (Kg)
GB-040-03-A-0100	<21'	10	26	26	2	34	M4 x 6	84	40	67	40	8	45	M3 $\times 7$	0.51
GB-040-05-A-0100	<21'	10	26	26	2	34	M4 x 6	84	40	67	40	8	45	M3 $\times 7$	0.51
GB-040-07-A-0100	<21'	10	26	26	2	34	M4 x 6	84	40	67	40	8	45	M3 $\times 7$	0.51
GB-040-10-A-0100	<21'	10	26	26	2	34	M 4×6	84	40	67	40	8	45	M 3×7	0.51
GB-040-03-A-0024	<21'	10	26	26	2	34	M 4×6	84	60	63	40	8	66.7	M 4×7	0.51
GB-040-05-A-0024	<21'	10	26	26	2	34	M 4×6	84	60	63	40	8	66.7	M 4×7	0.51
GB-040-07-A-0024	<21'	10	26	26	2	34	M4 $\times 6$	84	60	63	40	8	66.7	$\mathrm{M} 4 \times 7$	0.51
GB-040-10-A-0024	<21'	10	26	26	2	34	M 4×6	84	60	63	40	8	66.7	M4 x 7	0.51
GB-060-03-A-0400	<16'	14	35	40	3	52	M5 x 8	112	60	92.5	60	14	70	M5 x 12	1.7
GB-060-05-A-0400	<16'	14	35	40	3	52	M5 $\times 8$	112	60	92.5	60	14	70	M5 x 12	1.7
GB-060-07-A-0400	<16'	14	35	40	3	52	M5 x 8	112	60	92.5	60	14	70	M5 x 12	1.7
GB-060-10-A-0400	<16'	14	35	40	3	52	M5 x 8	112	60	92.5	60	14	70	M5 x 12	1.7
GB-060-03-A-0024	<16'	14	35	40	3	52	M5 x 8	71	60	85.5	60	8	66.7	M4 x 10	1.7
GB-060-05-A-0024	<16'	14	35	40	3	52	M5 x 8	71	60	85.5	60	8	66.7	M4 $\times 10$	1.7
GB-060-07-A-0024	<16'	14	35	40	3	52	M5 x 8	71	60	85.5	60	8	66.7	M4 $\times 10$	1.7
GB-060-10-A-0024	<16'	14	35	40	3	52	M5 x 8	71	60	85.5	60	8	66.7	M4 $\times 10$	1.7
GB-080-03-A-0750	<13'	20	40	60	3	70	M6 x 10	144	80	119.5	80	19	90	M6 $\times 15$	4.4
GB-080-05-A-0750	<13'	20	40	60	3	70	M6 x 10	144	80	119.5	80	19	90	M6 x 15	4.4
GB-080-07-A-0750	<13'	20	40	60	3	70	M6 x 10	144	80	119.5	80	19	90	M6 x 15	4.4
GB-080-10-A-0750	<13'	20	40	60	3	70	M6 x 10	144	80	119.5	80	19	90	M6 x 15	4.4
GB-080-03-A-0024	<13'	20	40	60	3	70	M6 x 10	144	80	109.5	80	8	66.7	M4 $\times 10$	4.4
GB-080-05-A-0024	<13'	20	40	60	3	70	M6 $\times 10$	144	80	109.5	80	8	66.7	M4 $\times 10$	4.4
GB-080-07-A-0024	<13'	20	40	60	3	70	M6 x 10	144	80	109.5	80	8	66.7	M 4×10	4.4
GB-080-10-A-0024	<13'	20	40	60	3	70	M6 x 10	144	80	109.5	80	8	66.7	M 4×10	4.4
GB-120-03-A-1000	<11'	25	55	80	4	100	M10 $\times 16$	194.5	130	160.5	115	24	115	M8 $\times 18$	12
GB-120-05-A-1000	<11'	25	55	80	4	100	M10 $\times 16$	194.5	130	160.5	115	24	115	M8 $\times 18$	12
GB-120-07-A-1000	<11'	25	55	80	4	100	M10 $\times 16$	194.5	130	160.5	115	24	115	M8 $\times 18$	12
GB-120-10-A-1000	<11'	25	55	80	4	100	M10 $\times 16$	194.5	130	160.5	115	24	115	M8 $\times 18$	12

Series CO

1 motion transmission devices

Mod. COE: elastomer coupling with clamps
Mod. COS: elastomer coupling with expansion shaft Mod. COT: self-centering locking-set

The motion transmission devices are necessary for a proper connection of electromechanical axes and cylinders with motors or gearboxes.

Mod. COE couplings are composed of two hubs with a high concentricity clamp and an elastomeric element.
Mod. COS couplings are composed of one hub with a high concentricity clamp, a hub with expansion shaft and an elastomeric element.
The torque transmission is performed without angular play or vibrations. Both couplings are without angular play thanks to the pretensioning of the elastomer between the two semicouplings.

Mod. COT locking-sets are composed by an internal and an external conical ring connected with eachother by means of several screws. Through the tightening of the screws, an axial force is generated that enables the torque transmission from the shaft to the hub.

Elastomer coupling with clamps Mod．COE

Mod．	${ }_{6} \mathrm{DC}^{\left({ }^{(7)}\right)}$	${ }_{\varnothing} \mathrm{DM}^{(H 7)}$	${ }_{6} \mathrm{DE}$	${ }_{\varnothing} \mathrm{DB}$	${ }_{9} \mathrm{DI}$	A	C	F	G	B1	Torque force（ Nm ）	Nominal torque（Nm）	Weight（g）
COE－05－0800－0635－A	8	6.35	25	25	10.2	26	8	8	4	M3（CH2．5）	2	9	20
COE－05－0800－0800－A	8	8	25	25	10.2	26	8	8	4	M3（CH2．5）	2	9	20
COE－10－1000－0635－A	10	6.35	32	32	14.2	32	10.3	10.5	5	M4（CH2．5）	4	12.5	50
COE－10－1200－0800－A	12	8	32	32	14.2	32	10.3	10.5	4	M4（CH2．5）	4	12.5	50
COE－10－1000－1400－A	10	14	32	32	14.2	32	10.3	10.5	5	M4（CH3）	4	12.5	20
COE－10－1200－1400－A	12	14	32	32	14.2	32	10.3	10.5	5	M4（CH3）	4	12.5	50
COE－10－1500－0800－A	15	8	32	32	14.2	32	10.3	10.5	5	M4（CH3）	4	12.5	50
COE－20－1500－1900－A	15	19	42	44.5	19.2	50	17	15.5	8.5	M5（CH4）	8	17	120
COE－60－1900－1400－A	19	14	56	57	26.2	58	20	21	10	M6（CH5）	15	60	300
COE－60－1900－2000－A	19	20	56	57	26.2	58	20	21	10	M6（CH5）	15	60	300
COE－60－1900－2400－A	19	24	56	57	26.2	58	20	21	10	M6（CH5）	15	60	300
COE－60－2400－1400－A	24	14	56	57	26.2	58	20	21	10	M6（CH5）	15	60	300
COE－60－2400－2000－A	24	20	56	57	26.2	58	20	21	10	M6（CH5）	15	60	300
COE－60－2400－2400－A	24	24	56	57	26.2	58	20	21	10	M6（CH5）	15	60	300

Elastomer coupling with expansion shaft Mod．COS

Mod．	${ }_{\varnothing} \mathrm{DS}^{(\mathrm{h} 7)}$	${ }_{\varnothing} \mathrm{DM}^{(H 7)}$	${ }_{6} \mathrm{DE}$	${ }_{\varnothing} \mathrm{DB}$	${ }_{6} \mathrm{DI}$	A	C	CS	F	G	B1	Torque force（ Nm ）	B2	Torque force（Nm）	Nominal torque（Nm）	Weight（g）
COS－10－2000－1400－A	20	14	32	32	14.2	28	10.3	20	10.5	5	M4（CH3）	4	M5（CH4）	9	12.5	50
COS－10－2000－0800－A	20	8	32	32	14.2	28	10.3	20	10.5	5	M4（CH3）	4	M5（CH4）	9	12.5	50
COS－20－2600－2000－A	26	20	42	44.5	19.2	40	17	25	15.5	8.5	M5（CH4）	8	M6（CH5）	12	17	120
COS－60－3800－2500－A	38	25	56	57	26.2	46	20	27	21	10	M6（CH5）	15	M8（CH6）	32	60	300

Self-centering locking-set Mod. COT

Mod.	${ }_{8}$ DS	${ }_{6}$ DM	L	E	B1	Torque force (Nm)	Nominal torque (Nm)	Weight (g)
COT-2000-1000	20	10	13	15.5	M2.5 (CH2.5)	1.2	19	25
COT-2600-1400	26	14	17	20	M3 (CH2.5)	2.1	40	50
COT-3800-2000	38	20	21	26	M5 (CH4)	4.9	165	140
COT-4700-2500	47	25	26	32	M6 (CH5)	17	290	200

Contacts

electrics@camozzi.com

For further information about our products and conditions of sale, please contact the C_Electrics department at:

Camozzi Automation spa

Società Unipersonale
Via Borrine, 23/25
25080 Polpenazze d/G (BS)
Italy
Tel. + 390365674046
Fax +39 0365674306

Technical assistance

Product inquiries and requests for support:
Tel. +390303792790
service@camozzi.com

Automation

[^0]: （A）Value refers to a covered distance of 10000 Km （see the diagrams＂Life of the cylinder according to the average axial force applied＂）．
 ＊the maximum rotational speed of the cylinder varies according to the stroke（see the diagrams＂Maximum speed of the cylinder according to its stroke＂）

[^1]: $\mathrm{V}=$ speed $[\mathrm{m} / \mathrm{s}]$
 $\mathrm{c}=$ stroke [mm]

[^2]: Use with external sensors

